Portal

Description

给出一个\(n(n\leq10^5)\)的序列\(\{a_n\}(\Sigma a_i\leq10^6)\),求该数列所有连续和的异或和。

Solution

线段树/树状数组。

首先做出前缀和\(p\),然后按位考虑答案上的值。考虑\(2^k\)这一位,有多少个连续和\([i,j]\)在\(2^k\)位为\(1\)。我们发现,\(x\)在\(2^k\)位上为\(1⇔x \bmod 2^{k+1}\in[2^k,2^{k+1}-1]\)。那么对于每一个\(j\),求出有多少个\(i<j\)满足\((p_j-p_i) \bmod 2^{k+1}\in[2^k,2^{k+1}-1]\),即\(p_i\in[p_j-2^{k+1}+1,p_j-2^k] \pmod {2^{k+1}}\)。那么我们只要用线段树来做就好啦。注意这个区间有可能由于取模而被分成两半,要分别来求。

时间复杂度\(O(nlog^2(\Sigma a_i))\)。

Code

//[TJOI2017]异或和
#include <cstdio>
#include <cstring>
typedef long long lint;
inline char gc()
{
static char now[1<<16],*s,*t;
if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
return *s++;
}
inline int read()
{
int x=0; char ch=gc();
while(ch<'0'||'9'<ch) ch=gc();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
return x;
}
const int N=1e5+10;
int n; lint pre[N];
const int N1=4e6;
int cnt,rt,ch[N1][2]; int sum[N1];
inline void update(int p) {sum[p]=sum[ch[p][0]]+sum[ch[p][1]];}
void ins(int &p,int L0,int R0,int x)
{
if(!p) p=++cnt;
if(L0==R0) {sum[p]++; return;}
int mid=L0+R0>>1;
if(x<=mid) ins(ch[p][0],L0,mid,x);
else ins(ch[p][1],mid+1,R0,x);
update(p);
}
int optL,optR;
int query(int p,int L0,int R0)
{
if(!p) return 0;
if(optL<=L0&&R0<=optR) return sum[p];
int mid=L0+R0>>1; int res=0;
if(optL<=mid) res+=query(ch[p][0],L0,mid);
if(mid<optR) res+=query(ch[p][1],mid+1,R0);
return res;
}
int check(lint m)
{
cnt=0; rt=++cnt;
memset(ch,0,sizeof ch);
memset(sum,0,sizeof sum);
lint m1=m<<1,res=0;
for(int i=0;i<=n;i++)
{
lint x=pre[i]%m1,y=x-m;
if(y<0) optL=x+1,optR=y+m1,res+=query(rt,0,m1-1);
else
{
optL=0,optR=y; res+=query(rt,0,m1-1);
optL=x+1,optR=m1-1; if(optL<=optR) res+=query(rt,0,m1-1);
}
ins(rt,0,m1-1,x);
}
return res&1;
}
int main()
{
n=read();
for(int i=1;i<=n;i++) pre[i]=pre[i-1]+read();
lint ans=0;
for(lint i=1;i<=pre[n];i<<=1) if(check(i)) ans|=i;
printf("%lld\n",ans);
return 0;
}

P.S.

星际了看错题以为\(a_i\leq10^6\),也就是\(\Sigma a_i\leq10^{11}\)所以用了动态开点线段树...实际上用树状数组就可以解决,常数还要小很多。

洛谷P3760 - [TJOI2017]异或和的更多相关文章

  1. Bzoj3261/洛谷P4735 最大异或和(可持久化Trie)

    题面 Bzoj 洛谷 题解 显然,如果让你查询整个数列的最大异或和,建一颗\(01Trie\),每给定一个\(p\),按照二进制后反方向跳就行了(比如当前二进制位为\(1\),则往\(0\)跳,反之亦 ...

  2. [洛谷P3763] [TJOI2017]DNA

    洛谷题目链接:[TJOI2017]DNA 题目描述 加里敦大学的生物研究所,发现了决定人喜不喜欢吃藕的基因序列S,有这个序列的碱基序列就会表现出喜欢吃藕的性状,但是研究人员发现对碱基序列S,任意修改其 ...

  3. [洛谷P3761] [TJOI2017]城市

    洛谷题目链接:[TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速 ...

  4. 洛谷 P3359 改造异或树

    题目描述 给定一棵n 个点的树,每条边上都有一个权值.现在按顺序删掉所有的n-1条边,每删掉一条边询问当前有多少条路径满足路径上所有边权值异或和为0. 输入输出格式 输入格式: 第一行一个整数n. 接 ...

  5. 洛谷P3759 [TJOI2017]不勤劳的图书管理员 【树状数组套主席树】

    题目链接 洛谷P3759 题解 树状数组套主席树板题 #include<algorithm> #include<iostream> #include<cstring> ...

  6. 洛谷P3763 [Tjoi2017]DNA 【后缀数组】

    题目链接 洛谷P3763 题解 后缀数组裸题 在BZOJ被卡常到哭QAQ #include<algorithm> #include<iostream> #include< ...

  7. 洛谷P3760异或和

    传送门啦 传送门啦 一般这种位运算的题都要把每一位拆开来看,因为位运算每个位的结果这和这一位的数有关. 这样我们用s[i]表示a的前缀和,即 $ a[1]+a[2]+....a[i] $ ,然后我们从 ...

  8. 洛谷P4462 [CQOI2018]异或序列(莫队)

    题意 题目链接 Sol 一开始以为K每次都是给出的想了半天不会做. 然而发现读错题了维护个前缀异或和然后直接莫队搞就行,. #include<bits/stdc++.h> #define ...

  9. 【洛谷P3917】异或序列

    题目大意:给定一个长度为 N 的序列,每个位置有一个权值,求 \[\sum\limits_{1\le i\le j\le n}(a_i\oplus a_{i+1}...\oplus a_j)\] 的值 ...

随机推荐

  1. jmeter中登录和提交收银出现的错误

    登录出现的错误 登录界面如图所示: 为了防止登录跳转的问题response code 302的问题,要设置 2.提交收银界面 当系统设置必须传送jison格式时,要在HTTP Header Manag ...

  2. perl在linux下通过date获取当前时间

    perl处理文件的时候最好添加上 处理的时间戳,获取系统的时间又多种方法,但是反引号是最原始的,不需要其他外界条件和lib的支持. my $now = `date "+%F %T" ...

  3. 如何计算CDS view里两个时间戳之间的天数间隔

    ABAP透明表里的时间戳,数据类型为dec: 有个需求:计算这两个时间戳之间的天数间隔,丢弃时间戳年-月-日8位后面的小时:分钟:秒. 举个例子:如果时间戳是20180918173132,丢弃1731 ...

  4. (转)MyBatis框架的学习(六)——MyBatis整合Spring

    http://blog.csdn.net/yerenyuan_pku/article/details/71904315 本文将手把手教你如何使用MyBatis整合Spring,这儿,我本人使用的MyB ...

  5. Matplotlib_常用图表

    Matplotlib绘图一般用于数据可视化 1.常用的图表有: 折线图(坐标系图) 散点图/气泡图 条形图/柱状图 饼图 直方图 箱线图 热力图 折线图(坐标系图) 折线图用于显示随时间或有序类别的变 ...

  6. CPP-基础:TCHAR

    目 录 定义 使用原理 1.定义 TCHAR是通过define定义的字符串宏[1] 2.使用原理 因为C++支持两种字符串,即常规的ANSI编码(使用""包裹)和Unicode编码 ...

  7. linux——nmap端口扫描命令

    先安装 nmap :apt-get install nmap 端口扫描命令nmap -sS 172.16.55.100nmap -Pn 172.16.55.100第一组渗透测试指令,用于情报收集. 要 ...

  8. Java获取字符串里面的重复字符

    public static void main(String[] args) { String word="天地玄黄宇宙洪荒" + "日月盈昃辰宿列张" + & ...

  9. js解析json格式

    function save(){ var value2 = { "china":[ {"name":"hangzhou", "it ...

  10. java在线聊天项目0.8版 实现把服务端接收到的信息返回给每一个客户端窗口中显示功能

    迭代器的方式会产生锁定 服务器端增加发送给每个客户端已收到信息的功能 所以当获取到一个socket,并打开它的线程进行循环接收客户端发来信息时,我们把这个内部类的线程Client保存到集合List&l ...