并不对劲的bzoj4652:loj2085:uoj221:p1587:[NOI2016]循环之美
题目大意
对于已知的十进制数\(n\)和\(m\),在\(k\)进制下,有多少个数值上互不相等的纯循环小数,可以用\(x/y\)表示,其中 \(1\leq x\leq n,1\leq y\leq m\) (\(n,m\leq10^9,k\leq2000\))
题解
这个人(点这里)讲得很清楚\(\color{white}{\text{shing太强了}}\)
代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define maxn 2500010
#define lim 2500000
#define maxl 2010
#define LL long long
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(LL x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
int n,m,k,p[maxn],cnt,numk[100],num,f[maxn],no[maxn];
LL mu[maxn],ans;
map<int,LL>M;
map<pii,LL>G;
int gcd(int x,int y){if(x>y)swap(x,y);if(!x)return y;return gcd(y%x,x);}
LL getm(int x)
{
if(x<=lim)return mu[x];
if(M[x])return M[x];
LL res=1;
for(int l=2,r=0;l<=x;l=r+1)r=x/(x/l),res-=(LL)(r-l+1)*(LL)getm(x/l);
M[x]=res;
return res;
}
LL g(int x,int y)
{
if(!x)return getm(y);
if(y<=1)return y;
if(G[mp(x,y)])return G[mp(x,y)];
return G[mp(x,y)]=g(x-1,y)+g(x,y/numk[x]);
}
int main()
{
n=read(),m=read(),k=read();
no[1]=mu[1]=1;
rep(i,1,lim)
{
if(!no[i])mu[i]=-1,p[++cnt]=i;
for(int j=1;j<=cnt&&p[j]*i<=lim;j++)
{
no[p[j]*i]=1;
if(i%p[j]==0){mu[i*p[j]]=0;break;}
else mu[i*p[j]]=-mu[i];
}
}
rep(i,2,lim)mu[i]+=mu[i-1];
rep(i,1,k)f[i]=f[i-1]+(gcd(i,k)==1?1:0);
for(int i=1;p[i]<=k;i++)if(k%p[i]==0)numk[++num]=p[i];
for(int l=1,r=0;l<=min(n,m);l=r+1)r=min(n/(n/l),m/(m/l)),ans+=(LL)(g(num,r)-g(num,l-1))*(LL)(n/l)*(LL)(f[(m/l)%k]+(LL)((m/l)/k)*(LL)f[k]);
write(ans);
return 0;
}
并不对劲的bzoj4652:loj2085:uoj221:p1587:[NOI2016]循环之美的更多相关文章
- 洛谷P1587 [NOI2016]循环之美
传送门 不会,先坑着 https://kelin.blog.luogu.org/solution-p1587 //minamoto #include<cstdio> #include< ...
- luogu P1587 [NOI2016]循环之美
传送门 首先要知道什么样的数才是"纯循环数".打表可以发现,这样的数当且仅当分母和\(k\)互质,这是因为,首先考虑除法过程,每次先给当前余数\(*k\),然后对分母做带余除法,那 ...
- [UOJ#221][BZOJ4652][Noi2016]循环之美
[UOJ#221][BZOJ4652][Noi2016]循环之美 试题描述 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部 ...
- luogu 1587 [NOI2016]循环之美
LINK:NOI2016循环之美 这道题是 给出n m k 求出\(1\leq i\leq n,1\leq j\leq m\) \(\frac{i}{j}\)在k进制下是一个纯循环的. 由于数值相同的 ...
- BZOJ4652 NOI2016循环之美(莫比乌斯反演+杜教筛)
因为要求数值不同,不妨设gcd(x,y)=1.由提示可以知道,x/y是纯循环小数的充要条件是x·klen=x(mod y).因为x和y互质,两边同除x,得klen=1(mod y).那么当且仅当k和y ...
- bzoj4652 [Noi2016]循环之美
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在k进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对于已知 ...
- BZOJ4652 [Noi2016]循环之美 【数论 + 莫比乌斯反演 + 杜教筛】
题目链接 BZOJ 题解 orz 此题太优美了 我们令\(\frac{x}{y}\)为最简分数,则\(x \perp y\)即,\(gcd(x,y) = 1\) 先不管\(k\)进制,我们知道\(10 ...
- BZOJ4652: [Noi2016]循环之美(莫比乌斯反演,杜教筛)
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对 ...
- 题解 P1587 【[NOI2016]循环之美】
知识点:莫比乌斯反演 积性函数 杜教筛 废话前言: 我是古明地恋,写这篇题解的人已经被我 请各位读者自行无视搞事的恋恋带有删除线的内容,谢谢茄子. 这道题目本身并不难,但是公式推导/代码过程中具有迷惑 ...
随机推荐
- Leetcode 321.拼接最大数
拼接最大数 给定长度分别为 m 和 n 的两个数组,其元素由 0-9 构成,表示两个自然数各位上的数字.现在从这两个数组中选出 k (k <= m + n) 个数字拼接成一个新的数,要求从同一个 ...
- msp430入门编程24
msp430中C语言的扩展--段的使用 msp430入门学习 msp430入门编程
- 前端学习之-- Jquery
Jquery学习笔记 中文参考文档:http://jquery.cuishifeng.cn Jquery是一个包含DOM/BOM/JavaScript的类库引入jquery文件方法:<scrip ...
- bzoj4161 (k^2logn求线性递推式)
分析: 我们可以写把转移矩阵A写出来,然后求一下它的特征多项式,经过手动计算应该是这样的p(x)=$x^k-\sum\limits_{i=1}^ka_i*x^{k-i}$ 根据Cayley-Hamil ...
- Protobuf 完整解析 - 公司最常用的数据交互协议
Google Protocol Buffer(简称 Protobuf)是一种轻便高效的结构化数据存储格式,平台无关.语言无关.可扩展,可用于通讯协议和数据存储等领域. 数据交互xml.json.pro ...
- 使用vscode 编译 sass
由于我在工作中用的编辑器是 vscode ,所以记录一下vscode 编译sass 的配置 vs code 编译saass 1.在扩展里搜索“easy sass”,直接进行安装即可 2.安装后默认已经 ...
- A7139 无线通信驱动(STM32) 添加FIFO扩展模式,能够发送超大数据包
A7139 拥有电磁波唤醒以及10mW的发射功率,很easy实现长距离通信,眼下測试有障碍物能够轻松达到300m以上. 通过几天的调试,眼下能够发送随意大小的数据包,大小为1-16KB.所有使用中断收 ...
- 自定义的强大的UITableViewCell
UITableView的强大更多程度上来自于可以任意自定义UITableViewCell单元格.通常,UITableView中的Cell是动态的,在使用过程中,会创建一个Cell池,根据每个cell的 ...
- IOS 字典模型互转框架 MJExtension
IOS 字典模型互转框架 MJExtension 能做什么? MJExtension是一套字典和模型之间互相转换的超轻量级框架 MJExtension能完成的功能 字典(JSON) --> ...
- GCC 编译详解 (转)
GNU CC(简称为Gcc)是GNU项目中符合ANSI C标准的编译系统,能够编译用C.C++和Object C等语言编写的程序.Gcc不仅功能强大,而且可以编译如C.C++.Object C.Jav ...