洛谷3704 [SDOI2017] 数字表格 【莫比乌斯反演】
题目分析:
比较有意思,但是套路的数学题。
题目要求$ \prod_{i=1}^{n} \prod_{j=1}^{m}Fib(gcd(i,j)) $.
注意到$ gcd(i,j) $有大量重复,采用莫比乌斯反演。可以写成:
$ \prod_{i=1}^{min(n,m)}Fib(i)^{\sum_{i|d}\mu(\frac{d}{i})\lfloor \frac{n}{d}\rfloor\lfloor \frac{m}{d}\rfloor} $.
更进一步的,我们可以发现幂是一个求和,那么把求和依次提出,再重新组合在一起,就变成了:
$ \prod_{i=1}^{min(n,m)}(\prod_{i|d}Fib(i)^{\mu(\frac{d}{i})})^{\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor} $.
可以发现最外层的积的下标是$ i $或$ d $对答案没有影响,原因我们可以考虑当下标是$ i $的时候,它会对它的每个倍数产生影响,而倍数的影响是不论$ i $的。所以对于每个倍数我们同样可以枚举因数,式子可以写成:
$ \prod_{d=1}^{min(n,m)}(\prod_{i|d}Fib(i)^{\mu(\frac{d}{i})})^{\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor} $.
注意这个式子,它的里层是一个只与当前的$ d $有关的式子,而外层是一个典型的分块。那么我们预处理出里面的情况并做前缀积,外面再采用分块,这道题就可以顺利解决。
对于里面的式子,我们需要$ O(nlog{n}) $进行预处理,而每个询问我们可以分块解决,单次询问的时间复杂度是$ O(\sqrt{n}log{n}) $所以时间复杂度是$O(nlog{n}+T\sqrt{n}log{n})$.
注意到这题没有用到斐波那契数列的任何性质,所以函数$ Fib(x) $可以改成任意其它函数。
代码:
#include<bits/stdc++.h>
using namespace std; const int mod = ;
const int maxn = ; const int N = ; int n,m;
int Fib[maxn],Inv[maxn];
int MFib[maxn],MInv[maxn]; int flag[maxn],prime[maxn>>],mu[maxn],num; int fast_pow(int now,long long pw){
int z = now,ans = ;long long im = ;
while(im <= pw){
if(im & pw) ans = (1ll*ans*z)%mod;
z = (1ll*z*z)%mod; im <<= ;
}
return ans;
} void GetMiu(){
flag[] = ;mu[] = ;
for(int i=;i<=N;i++){
if(!flag[i]) prime[++num] = i,mu[i] = -;
for(int j=;j<=num&&i*prime[j]<=N;j++){
flag[i*prime[j]] = ;
if(i % prime[j] == ) {mu[i*prime[j]] = ;break;}
else mu[i*prime[j]] = -mu[i];
}
}
} void init(){
GetMiu();
Fib[] = ; Fib[] = ;
for(int i=;i<=N;i++) Fib[i] = (Fib[i-]+Fib[i-])%mod;
for(int i=;i<=N;i++) Inv[i] = fast_pow(Fib[i],mod-);
for(int i=;i<=N;i++) MFib[i] = ;
for(int i=;i<=N;i++){
for(int j=;i*j<=N;j++){
if(mu[j] == ) continue;
if(mu[j] == ) MFib[i*j] = (1ll*MFib[i*j]*Fib[i])%mod;
else MFib[i*j] = (1ll*MFib[i*j]*Inv[i])%mod;
}
}
for(int i=;i<=N;i++) MFib[i] = (1ll*MFib[i]*MFib[i-])%mod;
for(int i=;i<=N;i++) MInv[i] = fast_pow(MFib[i],mod-);
} void work(){
int res = ;
for(int i=;i<=min(n,m);){
int nxt = min(n/(n/i),m/(m/i));
long long z1 = 1ll*(n/i)*(m/i);
res = (1ll*res*fast_pow((1ll*MFib[nxt]*MInv[i-])%mod,z1))%mod;
i = nxt+;
}
printf("%d\n",res);
} int main(){
init();
int T; scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
work();
}
return ;
}
洛谷3704 [SDOI2017] 数字表格 【莫比乌斯反演】的更多相关文章
- [Sdoi2017]数字表格 [莫比乌斯反演]
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...
- 【bzoj4816】[Sdoi2017]数字表格 莫比乌斯反演
题目描述 Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生 ...
- BZOJ4816 SDOI2017 数字表格 莫比乌斯反演
传送门 做莫比乌斯反演题显著提高了我的\(\LaTeX\)水平 推式子(默认\(N \leq M\),分数下取整,会省略大部分过程) \(\begin{align*} \prod\limits_{i= ...
- bzoj 4816: 洛谷 P3704: [SDOI2017]数字表格
洛谷很早以前就写过了,今天交到bzoj发现TLE了. 检查了一下发现自己复杂度是错的. 题目传送门:洛谷P3704. 题意简述: 求 \(\prod_{i=1}^{N}\prod_{j=1}^{M}F ...
- 洛谷P3704 [SDOI2017]数字表格(莫比乌斯反演)
传送门 yyb大佬太强啦…… 感觉还是有一点地方没有搞懂orz //minamoto #include<cstdio> #include<iostream> #include& ...
- 洛谷 P3704 [SDOI2017]数字表格(莫比乌斯函数)
题面传送门 题意: 求 \[\prod\limits_{i=1}^n\prod\limits_{j=1}^mfib_{\gcd(i,j)} \] \(T\) 组测试数据,\(1 \leq T \leq ...
- 洛谷P3704 [SDOI2017]数字表格
题目描述 Doris刚刚学习了fibonacci数列.用f[i]f[i] 表示数列的第ii 项,那么 f[0]=0f[0]=0 ,f[1]=1f[1]=1 , f[n]=f[n-1]+f[n-2],n ...
- BZOJ.4816.[SDOI2017]数字表格(莫比乌斯反演)
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 这个好像简单些啊,只要不犯sb错误 [Update] 真的算反演中比较裸的题了... \(Descriptio ...
- BZOJ 4816 [Sdoi2017]数字表格 ——莫比乌斯反演
大力反演出奇迹. 然后xjb维护. 毕竟T1 #include <map> #include <ctime> #include <cmath> #include & ...
随机推荐
- POJ 2406 Power Strings(KMP)
Description Given two strings a and b we define a*b to be their concatenation. For example, if a = & ...
- 01-HTML介绍
1.WEB标准 web准备介绍: w3c:万维网联盟组织,用来制定web标准的机构(组织) web标准:制作网页遵循的规范 web准备规范的分类:结构标准.表现标准.行为标准. 结构:html.表示: ...
- sql中return和returns的区别
用户定义函数中,用RETURNS 子句指定该函数返回值的数据类型 return用于返回具体的值/值变量
- iOS-响应链(Responder Chain)
2017.05.08 20:40* 字数 1306 阅读 740评论 6喜欢 9 工作接近一年,很久没有更新博客.工作中学到很多知识点后面将花时间整理,作为对一年知识学习的总结: 下面是本篇博客的写作 ...
- Git使用过程中的问题
Q-1:怎么切换到远程的分支 本地已经有一个代码库了(是从github上clone的),但是现在远程库中一个新的branch,怎么拉取远程分支,并在本地创建该分支(内容一样).how to do? # ...
- js this的含义以及讲解
this关键字是一个非常重要的语法点.毫不夸张地说,不理解它的含义,大部分开发任务都无法完成. 首先,this总是返回一个对象,简单说,就是返回属性或方法“当前”所在的对象. 下面来两个例子来让大家更 ...
- react购物车demo
import React, { Component } from 'react'; import './App.css'; import {connect} from 'react-redux'; i ...
- HashMap深度解析(转载)
原文地址:http://blog.csdn.net/ghsau/article/details/16890151 实现原理:用一个数组来存储元素,但是这个数组存储的不是基本数据类型.HashMap实现 ...
- 在linux上安装spark详细步骤
在linux上安装spark ,前提要部署了hadoop,并且安装了scala. 提君博客原创 对应版本 >>提君博客原创 http://www.cnblogs.com/tijun/ ...
- day 7-16 单表查询
一.准备工作 先把表建立好,方便一会查询. create table emp( id int not null unique auto_increment, name varchar(20) not ...