引言

上一篇文章了解了kafka的重要组件zookeeper,用来保存broker、consumer等相关信息,做到平滑扩展。这篇文章就实际操作部署下kafka,用几个简单的例子加深对kafka的理解,学会基本使用kafka。

环境搭建

我将会在本地部署一个三台机器的zookeeper集群,和一个2台机器的kafka集群。

zookeeper集群

zookeeper的搭建可以看我的上一篇文章分布式系统中zookeeper实现配置管理+集群管理,按照步骤,一步步可以很容易的搭建3太服务器的zookeeper集群。跟之前一样,我还是在本地的3个端口搭建了3台服务器,地址如下所示:

192.168.0.105:2181
192.168.0.105:2182
192.168.0.105:2183

这三台服务器一会儿会在kafka配置中用到。

kafka集群

第一步. 下载kafka

到kafka官网下载apache kafka,解压到/path/to/kafka目录。

第二步. 修改配置文件

复制/path/to/kafka/config/server.properties,到/path/to/kafka/config/server-1.properties/path/to/kafka/config/server-2.properties

配置文件中修改的差异内容如下所示:

server-1.properties

broker.id=1
listeners=PLAINTEXT://:9093
log.dirs=/tmp/kafka-logs-1
zookeeper.connect=192.168.0.105:2181,192.168.0.105:2182,192.168.0.105:2183

server-2.properties

broker.id=2
listeners=PLAINTEXT://:9094
log.dirs=/tmp/kafka-logs-2
zookeeper.connect=192.168.0.105:2181,192.168.0.105:2182,192.168.0.105:2183

其中broker.id是broker的唯一标示,集群中的broker标识必须唯一。

listeners是broker监听的地址和端口,advertised.listeners用于和producer、consumer交互,后者未配置会默认使用前者,listeners的完整格式是listeners = listener_name://host_name:port,其中PLAINTEXT是协议,还有一种是SSL,具体还没太搞明白(TODO)。

log.dirs是日志数据的存放目录,也就是producer产生的数据存放的目录。

zookeeper.connect配置是zookeeper的集群,broker启动之后将信息注册到zookeeper集群中。

第三步. 启动服务器

cd /path/to/kafka
bin/kafka-server-start.sh -daemon config/server-1.properties
bin/kafka-server-start.sh -daemon config/server-2.properties

使用jps命令可以看见2个kafka进程,证明启动成功了。

第四步. 创建topic

创建topic一般使用kafka自带的脚本创建:

bin/kafka-topics.sh --create --zookeeper 192.168.0.105:2181,192.168.0.105:2182,192.168.0.105:2183 --replication-factor 2 --partitions 10 --topic user-event

其中--zookeeper就是后面就是我们上面配置的zookeeper集群,--replication-factor代表每个分区在集群中复制的份数,后面的值要小于kafka集群中服务器数量,--partitions表示创建主题的分区数量,一般分区越大,性能越好,--topic后边儿就是创建主题的名字,运行成功之后会看到Created topic "user-event".字样,表示创建成功,会在kafka配置的日志目录下创建主题信息,比如下面的:

ll /tmp/kafka-logs-1

drwxr-xr-x  7 ritoyan  wheel  224  6  3 21:21 clock-tick-0
drwxr-xr-x 7 ritoyan wheel 224 6 3 21:21 clock-tick-2
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-0
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-1
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-2
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-3
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-4
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-5
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-6
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-7
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-8
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-9

ll /tmp/kafka-logs-2

drwxr-xr-x  7 ritoyan  wheel  224  6  3 21:21 clock-tick-1
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-0
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-1
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-2
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-3
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-4
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-5
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-6
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-7
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-8
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-9

可以看到两个broker中都创建了主题user-event的10个分区。可能也有人要问了,clock-tick这个主题怎么在broker1中有2个分区,broker2中有1个分区,这个是我之前创建的一个分区,用了下面的命令bin/kafka-topics.sh --create --zookeeper 192.168.0.105:2181,192.168.0.105:2182,192.168.0.105:2183 --replication-factor 1 --partitions 3 --topic clock-tick,只有一份日志记录,3个分区,分区会均匀的分布在所有broker上。

至此kafka环境配置好了,西面我们看看如何使用。

基本使用

安装kafka-python,用来操作kafka,pip3 install kafka-python,这里是他的文档,文档写的不错,简洁易懂kafka-python

producer 向broker发送消息

bootstrap_servers是kafka集群地址信息,下面事项主题user-event发送一条消息,send发送消息是异步的,会马上返回,因此我们要通过阻塞的方式等待消息发送成功(或者flush()也可以,flush会阻塞知道所有log都发送成功),否则消息可能会发送失败,但也不会有提示,关于上面这个可以通过删除send之后的语句试试,会发现broker不会收到消息,然后在send后加上time.sleep(10)之后,会看到broker收到消息。

from kafka import KafkaProducer
from kafka.errors import KafkaError producer = KafkaProducer(
bootstrap_servers=[
"localhost:9093",
"localhost:9094"
]
) future = producer.send("user-event", b'I am rito yan')
try:
record_metadata = future.get(timeout=10)
print_r(record_metadata)
except KafkaError as e:
print(e)

阻塞等待发送成功之后,会看到返回插入记录的信息:

RecordMetadata(topic='user-event', partition=7, topic_partition=TopicPartition(topic='user-event', partition=7), offset=1, timestamp=1528034253757, checksum=None, serialized_key_size=-1, serialized_value_size=13),里面包括了插入log的主题、分区等信息。

格式化发送的信息

创建producer的时候可以通过value_serializer指定格式化函数,比如我们数据是个dict,可以指定格式化函数,将dict转化为byte:

import json

producer = KafkaProducer(
bootstrap_servers=[
"localhost:9093",
"localhost:9094"
],
value_serializer=lambda m: json.dumps(m).encode('ascii')
) future = producer.send("user-event", {
"name": "燕睿涛",
"age": 26,
"friends": [
"ritoyan",
"luluyrt"
]
})

这样就可以将格式化之后的信息发送给broker,不用每次发送的时候都自己格式化,真是不要太好用。

consumer 消费数据

创建一个consumer,其中group_id是分组,broker中的每一个数据只能被consumer组中的一个consumer消费。

from kafka import KafkaConsumer

consumer = KafkaConsumer(
"user-event",
group_id = "user-event-test",
bootstrap_servers = [
"localhost:9093",
"localhost:9094"
]
)
for message in consumer:
print("%s:%d:%d: key=%s value=%s" % (message.topic, message.partition,
message.offset, message.key,
message.value))

启动之后,进程会一直阻塞在哪里,等broker中有消息的时候就会去消费,启动多个进程,只要保证group_id一致,就可以保证消息只被组内的一个consumer消费,上面的程序会输出:

user-event:8:2: key=None value=b'{"name": "\\u71d5\\u777f\\u6d9b", "age": 26, "friends": ["ritoyan", "luluyrt"]}'

同样,进入的时候有value_serializer,出来的时候对应的也有value_deserializer,消费者可以配置value_deserializer来格式化内容,跟producer对应起来

consumer = KafkaConsumer(
"user-event",
group_id = "user-event-test",
bootstrap_servers = [
"localhost:9093",
"localhost:9094"
],
value_deserializer=lambda m: json.loads(m.decode('ascii'))
)

输出内容user-event:8:3: key=None value={'name': '燕睿涛', 'age': 26, 'friends': ['ritoyan', 'luluyrt']}

kafka其他命令

查看分组

我们的consumer可能有很多分组,可以通过西面的命令查看分组信息:

cd /path/to/kafka
bin/kafka-consumer-groups.sh --bootstrap-server localhost:9093,localhost:9094 --list

可以看到我使用中的分组有4个,分别如下所示

clock-tick-test3
user-event-test
clock-tick-test2
clock-tick-test

查看特定分组信息

可以通过bin/kafka-consumer-groups.sh --bootstrap-server 127.0.0.1:9093 --group user-event-test --describe,查看分组user-event-test的信息,可以看到西面的信息,包含消费的主题、分区信息,以及consumer在分区中的offset和分区的总offset。(为了格式化显示,删了部分列的部分字母)

TOPIC		PARTITION	CURRENT-OFFSET	LOG-END-OFFSET	LAG	CONSUMER-ID	HOST	CLIENT-ID
user-event 3 0 0 0 kafka-python-154b2 /127.0.0.1 kafka-python
user-event 0 0 0 0 kafka-python-154b2 /127.0.0.1 kafka-python
user-event 1 1 1 0 kafka-python-154b2 /127.0.0.1 kafka-python
user-event 2 1 1 0 kafka-python-154b2 /127.0.0.1 kafka-python
user-event 4 0 0 0 kafka-python-154b2 /127.0.0.1 kafka-python
user-event 9 1 1 0 kafka-python-78517 /127.0.0.1 kafka-python
user-event 8 4 4 0 kafka-python-78517 /127.0.0.1 kafka-python
user-event 7 2 2 0 kafka-python-78517 /127.0.0.1 kafka-python
user-event 6 1 1 0 kafka-python-78517 /127.0.0.1 kafka-python
user-event 5 0 0 0 kafka-python-78517 /127.0.0.1 kafka-python

结语

至此,kafka的基本使用算是掌握了,以后要是有机会在项目中实践就好了,在实际工程中的各种问题可以更加深刻的理解其中的原理。

kafka环境搭建和使用(python API)的更多相关文章

  1. kafka环境搭建及librdkafka测试

    kafka环境搭建及librdkafka测试 (2016-04-05 10:18:25)   一.kafka环境搭建(转自http://kafka.apache.org/documentation.h ...

  2. windows下golang实现Kfaka消息发送及kafka环境搭建

    kafka环境搭建: 一.安装配置java-jdk (1)kafka需要java环境,安装java-jdk,下载地址:https://www.oracle.com/technetwork/java/j ...

  3. kafka环境搭建

    kafka环境搭建 for mac 对应qq群号:616961231 在之前的文章中, 有学习能力和兴趣爱好的同学,自己动手维护测试环境,丰衣足食是最好的办法,今天我们来讲讲kafka在mac上的安装 ...

  4. Python+selenium测试环境成功搭建,简单控制浏览器(firefox)接下来,继续学习其他浏览器上的测试环境搭建;学习Python语言,利用Python语言来写测试用例。加油!!!

    Python+selenium测试环境成功搭建,简单控制浏览器(firefox)接下来,继续学习其他浏览器上的测试环境搭建:学习Python语言,利用Python语言来写测试用例.加油!!!

  5. 【入门教程】kafka环境搭建以及基础教程

    问题导读 1.Kafka独特设计在什么地方?2.Kafka如何搭建及创建topic.发送消息.消费消息?3.如何书写Kafka程序?4.数据传输的事务定义有哪三种?5.Kafka判断一个节点是否活着有 ...

  6. windows kafka 环境搭建踩坑记

    版本介绍(64位): Windows 10 JDK1.8.0_171 zookeeper-3.4.8/ kafka_2.11-0.10.0.1.tgz 点击链接进行下载 1. JDK安装和环境搭建 自 ...

  7. Kafka - 环境搭建

    一.概述 Kafka(官网地址)专为分布式高吞吐量系统而设计. Kafka往往工作得很好,作为一个更传统的消息代理的替代品. 与其他消息传递系统相比,Kafka具有更好的吞吐量,内置分区,复制和固有的 ...

  8. kafka环境搭建2-broker集群+zookeeper集群(转)

    原文地址:http://www.jianshu.com/p/dc4770fc34b6 zookeeper集群搭建 kafka是通过zookeeper来管理集群.kafka软件包内虽然包括了一个简版的z ...

  9. windows10下Kafka环境搭建

    内容小白,包含JDK+Zookeeper+Kafka三部分.JDK:1)   安装包:Java SE Development Kit 9.0.1      下载地址:http://www.oracle ...

随机推荐

  1. SAP生产机该不该开放Debuger权限

    前段时间公司定制系统在调用SAP RFC接口的时候报错了,看错误消息一时半会儿也不知道是哪里参数数据错误,就想着进到SAP系统里面对这个接口做远程Debuger,跟踪一下参数变量的变化,结果发现根本就 ...

  2. (转载)SPARKR,对RDD操作的介绍

    原以为,用sparkR不能做map操作, 搜了搜发现可以. lapply等同于map, 但是不能操作spark RDD. spark2.0以后, sparkR增加了 dapply, dapplycol ...

  3. 搭建的flask项目,若修改项目中的文件,项目没有reload,除非重启主机,解决方法如下

    1.博主本人前面有发过一篇博文如何搭建flask项目,可以去查看. 解决办法:加入一句 touch-reload=项目目录在uwsgi.ini 2.测试没问题

  4. The content of element type "package" must match "(result-types?,interceptors?,default-interceptor-ref?,default-action-ref?,default-class-ref?,global- results?,global-exception-mappings?,action*)".

    报错 The content of element type "package" must match "(result-types?,interceptors?,def ...

  5. jQuery实现画面的展开、收起和停止

    主要用到动画效果中的三个操作 ("#id").slideDown(3000): // 后面的数字表示效果的时长 ("#id").stop(); ("# ...

  6. python第一百零八天---Django 3 session 操作

    上节内容回顾: 1.请求周期 url> 路由 > 函数或类 > 返回字符串或者模板语言? Form表单提交: 提交 -> url > 函数或类中的方法 - .... Ht ...

  7. django重定向

    return HttpResponseRedirect('/index/')# 重定向返回url格式:http://127.0.0.1:8000/index/会去掉前期的所有路由重新写入/index/ ...

  8. Incorrect key file for table错误解决方法

    问题现象: alter table portal_app_xxxx_xxx add devno varchar(64) NOT NULL DEFAULT '' COMMENT '设备机编',add s ...

  9. Linux文件管理命令 cat

    1.cat 命令:将文件内容连接后传送到标准输出或重定向到文件. 1)命令语法格式:cat [OPTION] [FILE]... 2)命令选项参数说明如下所示. -n(number):从第一行开始对文 ...

  10. ELK-logstash-6.3.2-常用配置

    1. input-file收集日志信息 [yun@mini04 config]$ pwd /app/logstash/config [yun@mini04 config]$ cat file.conf ...