【BZOJ5335】[TJOI2018]智力竞赛(二分图匹配)
【BZOJ5335】[TJOI2018]智力竞赛(二分图匹配)
题面
题解
假装图不是一个DAG想了半天,。发现并不会做。
于是假装图是一个DAG。
那么显然就是二分答案,然后求一个最小链覆盖就好了。。。
然而一开始我以为是不交的链覆盖。。。。
然而是可以交的。。。
所以就Floyd求一下连通性再二分图匹配就好了。。。
读不懂题.jpg
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 505
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m,v[MAX],mx;
int g[MAX][MAX];
int vis[MAX],tim;
int match[MAX],S[MAX],top;
bool dfs(int x)
{
for(int i=1;i<=top;++i)
if(vis[i]!=tim&&g[S[x]][S[i]])
{
vis[i]=tim;
if(!match[i]||dfs(match[i]))
{
match[i]=x;
return true;
}
}
return false;
}
int check(int mid)
{
top=0;for(int i=1;i<=m;++i)if(v[i]<mid)S[++top]=i;
int ret=top;++tim;
for(int i=1;i<=top;++i)match[i]=0;
for(int i=1;i<=top;++i,++tim)ret-=dfs(i);
return ret;
}
int main()
{
n=read()+1;m=read();
for(int i=1;i<=m;++i)
{
mx=max(mx,v[i]=read());
int K=read();while(K--)g[i][read()]=1;
}
for(int k=1;k<=n;++k)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
g[i][j]|=g[i][k]&g[k][j];
int l=1,r=mx;
while(l<=r)
{
int mid=(l+r)>>1;
if(check(mid)<=n)l=mid+1;
else r=mid-1;
}
if(l<=mx)printf("%d\n",l-1);
else puts("AK");
return 0;
}
【BZOJ5335】[TJOI2018]智力竞赛(二分图匹配)的更多相关文章
- BZOJ5335 : [TJOI2018]智力竞赛
二分答案,转化成求最少的路径,覆盖住所有权值$\leq mid$的点. 建立二分图,若$i$的后继为$j$,则连边$i\rightarrow j$,求出最大匹配,则点数减去最大匹配数即为最少需要的路径 ...
- 洛谷P4589 [TJOI2018]智力竞赛(二分答案 二分图匹配)
题意 题目链接 给出一个带权有向图,选出n + 1n+1条链,问能否全部点覆盖,如果不能,问不能覆盖的点权最小值最大是多少 Sol TJOI怎么净出板子题 二分答案之后直接二分图匹配check一下. ...
- BZOJ5335:[TJOI2018]智力竞赛——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5335 小豆报名参加智力竞赛,他带上了n个好朋友作为亲友团一块来参加比赛. 比赛规则如下: 一共有m ...
- [TJOI2018]智力竞赛
题目 发现我们需要最大化最小值,基本是二分了 那么我们二分出来一个值我们将小于等于这个值的都删去,现在的问题变成了如何用\(n+1\)条路径覆盖这张图 这不最小路径覆盖吗 于是我就忘了最小路径覆盖怎么 ...
- 洛谷P4589 [TJOI2018]智力竞赛 【floyd + 二分 + KM】
题目链接 洛谷P4589 题意可能不清,就是给出一个带权有向图,选出\(n + 1\)条链,问能否全部点覆盖,如果不能,问不能覆盖的点权最小值最大是多少 题解 如果要问全部覆盖,就是经典的可重点的DA ...
- [TJOI2018]智力竞赛【网络流】
题解: 这垃圾题意 问题二分之后等价于 可重复路径判断能否覆盖一张图 1.用floyd连边(来保证可重复) 然后拆点跑最大流 然后答案=n-最大流 但这样子做本来复杂度就比较高,边数增加了n倍 2.我 ...
- 【洛谷P4589】[TJOI2018]智力竞赛(二分+最小链覆盖)
洛谷 题意: 给出一个\(DAG\),现在要选出\(n+1\)条可相交的链来覆盖,最终使得未被覆盖的点集中,权值最小的点的权值最大. 思路: 显然最终的答案具有单调性,故直接二分答案来判断: 直接将小 ...
- loj#2574. 「TJOI2018」智力竞赛 (路径覆盖)
目录 题目链接 题解 代码 题目链接 loj#2574. 「TJOI2018」智力竞赛 题解 就是求可重路径覆盖之后最大化剩余点的最小权值 二分答案后就是一个可重复路径覆盖 处理出可达点做二分图匹配就 ...
- HDU 5943 Kingdom of Obsession 【二分图匹配 匈牙利算法】 (2016年中国大学生程序设计竞赛(杭州))
Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
随机推荐
- elasticsearch判断索引是否存在
一.判断索引是否存在 指定索引名,判断指定的索引是否存在集群中 /** * 判断指定的索引名是否存在 * @param indexName 索引名 * @return 存在:true; 不存在:fal ...
- python Drools
python Drools - 国际版 Binghttps://cn.bing.com/search?q=python+Drools&qs=n&FORM=BESBTB&sp=- ...
- MyBatis源码分析1 参数映射分析
首先我们拿出之前的代码,在如图位置打上断点,开始调试 我们规定了一个mapper接口,而调用了mapper接口的getEmpByIdAndLastName,我们并没有实现这个接口,这是因为Mybati ...
- NIO服务器与客户端
这里客户端没有采用NIO形式 服务器: package com.util.Server.NIO; import javax.print.DocFlavor;import java.io.IOExcep ...
- Golang的channel使用以及并发同步技巧
在学习<The Go Programming Language>第八章并发单元的时候还是遭遇了不少问题,和值得总结思考和记录的地方. 做一个类似于unix du命令的工具.但是阉割了一些功 ...
- python设计模式第七天【建造者模式】
1. 建造者模式UML图 2.应用场景 (1)专门创建具有符合属性的对象 3.代码实现 #!/usr/bin/env python #! _*_ coding: UTF-8 _*_ from abc ...
- 老男孩python学习自修第二十四天【多进程】
1. 体验多进程的运行速度 #!/usr/bin/env python # _*_ coding:UTF-8 _*_ from multiprocessing import Pool import t ...
- vscode git设置
vscode只能打开一下界面: 在setting.path增加git.path选项,再使用linux的方法配置路径,就是使用D:/../bin/git.exe而不是\\ 重启vscode,git设置即 ...
- WhiteHat Contest 11 : re1-100
ELF文件,运行一下是要求输密码 die查了一下无壳 直接拖入ida 可以发现 这是它的判断函数 也就是说输入的总长度是42位第一个字符是123也就是0x7b 也就是'{'然后10位是"53 ...
- 线程同步Volatile与Synchronized(一)
volatile 一.volatile修饰的变量具有内存可见性 volatile是变量修饰符,其修饰的变量具有内存可见性. 可见性也就是说一旦某个线程修改了该被volatile修饰的变量,它会保证修改 ...