(2016浙江填空压轴题)
已知实数$a,b,c$则 (     )
A.若$|a^2+b+c|+|a+b^2+c|\le1,$则$a^2+b^2+c^2<100$
B.若$|a^2+b+c|+|a+b^2-c|\le1,$则$a^2+b^2+c^2<100$
C.若$|a+b+c|+|a+b-c|\le1,$则$a^2+b^2+c^2<100$
D.若$|a^2+b+c|+|a+b^2-c|\le1,$则$a^2+b^2+c^2<100$


分析:利用排除法
A中令$c=-10,a=b,a^2+a-10=0$
B中令$c=0,b=-10,a^2=10$
C中令$c=0,a=10,b=-10$
故选D.D中$1\ge|a^2+b+c|+|a+b^2-c|\ge|a^2+a+b^2+b|=|(a+\dfrac{1}{2})^2+(b+\dfrac{1}{2})^2-\dfrac{1}{2}|$
易得$\dfrac{3}{2}\ge(a+\dfrac{1}{2})^2+(b+\dfrac{1}{2})^2\ge(a+\dfrac{1}{2})^2$故$a^2<4$同理$b^2<4$
$1\ge|a^2+b+c|+|a+b^2-c|\ge|a^2+b+c|$故$c^2<92$,得$a^2+b^2+c^2<100$

注:若$|a^2+ b + c| + |b^2 + a - c|\le1$, 则$a^2 + b^2 + c^2\le9.9032\cdots$是

$65536k^8 - 1327104k^7 + 8736256k^6 - 21760832k^5 + 18368665k^4$
$- 11528502k^3 + 9119692k^2 - 4451760k + 792768=0$

的最大实根.

注:
$a^2 + b^2 + c^2 < 7 + 4(a^2 + b + c)^2 + 4(b^2 + a - c)^2\le7 + 4[|a^2 + b + c| + |b^2 + a - c|]^2\le11.$

练习:已知$x,y\in R$(       )

A.若$|x-y^2|+|x^2+y|\le1$,则$(x+\dfrac{1}{2})^2+(y-\dfrac{1}{2})^2\le\dfrac{3}{2}$
B.若$|x-y^2|+|x^2-y|\le1$,则$(x-\dfrac{1}{2})^2+(y-\dfrac{1}{2})^2\le\dfrac{3}{2}$
C.若$|x+y^2|+|x^2-y|\le1$,则$(x+\dfrac{1}{2})^2+(y+\dfrac{1}{2})^2\le\dfrac{3}{2}$
D.若$|x+y^2|+|x^2+y|\le1$,则$(x-\dfrac{1}{2})^2+(y+\dfrac{1}{2})^2\le\dfrac{3}{2}$
分析:排除法,A中令 $x=\dfrac{1}{2},y=-\dfrac{1}{2}$
C中令 $x=\dfrac{1}{2},y=\dfrac{1}{2}$
D中令 $x=-\dfrac{1}{2},y=\dfrac{1}{2}$
故选B

MT【303】估计的更多相关文章

  1. MT【273】2014新课标压轴题之$\ln2$的估计

    已知函数$f(x)=e^x-e^{-x}-2x$(1)讨论$f(x)$的单调性;(2)设$g(x)=f(2x)-4bf(x),$当$x>0$时,$g(x)>0,$求$b$的最大值;(3)已 ...

  2. MT【162】渐近估计

    (2017北大优特测试第八题) 数列 \(\{a_n\}\) 满足 \(a_1=1\),\(a_{n+1}=a_n+\dfrac{1}{a_n}\),若 \(a_{2017}\in (k,k+1)\) ...

  3. MT【121】耐克数列的估计

    已知$\{a_n\}$满足$a_1=1,a_2=2,\dfrac{a_{n+2}}{a_n}=\dfrac{a_{n+1}^2+1}{a_n^2+1}$, 求$[a_{2017}]$_____ 解:容 ...

  4. MT【111】画图估计

    评:此类方程是超越方程,一般情况下无法解出具体的解,常见手段:1.画图  2.猜根.此处可以取特殊值a=2.5,b=3.5,容易知道此时$x=2.5\in(2,3)$

  5. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  6. 关于电脑玩MT以及多开的方法

    方法是转的别人的首先感谢原创者!!上四开屏幕截图,因为小伙伴需要8张卡,所以我四个四个一起练.8开我的电脑估计都有压力,五开六开可能没问题,但是为了方便就四开,练完四个再练四个.图接下来说下多开模拟器 ...

  7. /MT /MD /ML /MTd /MDd /MLd 的区别

    Multithreaded Libraries Performance The single-threaded CRT is no longer ( in vs2005 ) available. Th ...

  8. java开发3轮技术面+hr面 面经(MT)

    一直没打理博客园  发现博客园阅读量好大,就把前段时间写的一个面经也搬过来咯,大家一起加油.... 作者:小仇Eleven 链接:https://www.nowcoder.com/discuss/37 ...

  9. /MD、/MT、/LD( 使用 多线程版本 运行时库的C runtime library)

    /MD./MT./LD(使用运行时库)(微软官网解释) Visual C++ 编译器选项 /MD./ML./MT./LD 区别 指定与你项目连接的运行期库 /MT多线程应用程序 /Mtd多线程应用程序 ...

随机推荐

  1. Python类与对象的理解

    注意python的类对象与实例对象的区分 类对象与实例对象是相对的,例如:a=1,那么a就是int的一个实例对象,这里的a相对于int来说,a是实例对象,int是类对象.但是int同时又是type的实 ...

  2. 软件工程(FZU2015) 学生博客列表(最终版)

    FZU:福州大学软件工程 张老师的博客:http://www.cnblogs.com/easteast/ 经过前两周选课,最后正式选上课程的所有学生博客如下: 序号 学号后3位 博客 1 629 li ...

  3. 阿里云服务器使用镜像市场上的环境以后sql不能远程问题

    关于阿里云的服务器,首先要说的就是买了以后是没有环境的,什么都需要自己配置,也是在这个上面栽了很多跟头最后去的镜像市场买的一个IIS8+SQL2016的asp.net环境 怎么说呢,感觉有些问题的本源 ...

  4. tomcat redis 集群 session共享

    jcoleman/tomcat-redis-session-manager: Redis-backed non-sticky session store for Apache Tomcathttps: ...

  5. http/https与websocket的ws/wss的关系以及通过Nginx的配置

    http/https与websocket的ws/wss的关系 - 哒哒哒 - CSDN博客 https://blog.csdn.net/Garrettzxd/article/details/81674 ...

  6. C#中使用打印日志

    在日常的工作中经常需要日志,这样能够很容易定位到代码中的一些错误,.Net中有自带的日志接口.并没有仔细去研究,这里是我自己写的日志接口,记录下来以便以后用到,根据时间打印相关的日志文件,代码如下: ...

  7. Windows 下面 redis 发布为服务的官方方法

    除了 NSSM 之外 另外一种方式 感觉还是很好用的 redis-server --service-install redis.windows.conf --loglevel verbose 感觉也可 ...

  8. cpp11_thread线程

    一.进程与线程 cpu一般有m核n线程的说法,那么该cpu只能同时运行n个线程(线程中没有sleep). #include <thread> #include <mutex> ...

  9. flask保存 文件到本地

    本篇队长介绍一下如何 把前端上传的文件保存 到 后端flask项目目录 首先讲一下上传.保存文件的思路: 第一步:前端通过post请求方式提交上传的文件 <input id="file ...

  10. vue 條件語句

    條件判斷使用v-if.v-else-if.v-else. v-show