Python、进程间通信、进程池、协程
进程间通信
进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的。
进程队列queue
不同于线程queue,进程queue的生成是用multiprocessing模块生成的。
在生成子进程的时候,会将代码拷贝到子进程中执行一遍,及子进程拥有和主进程内容一样的不同的名称空间。
示例1:
1 import multiprocessing
2 def foo():
3 q.put([11,'hello',True])
4 print(q.qsize())
5
6 q=multiprocessing.Queue() #全局定义一个q进程队列,在产生子进程时候会在子进程里生成,可以指定最大数,限制队列长度
7 if __name__ == '__main__':
8 p=multiprocessing.Process(target=foo,args=()) #因为名称空间不同,子进程的主线程创建的q队列,主进程get不到,所以会阻塞住
9 p.start()
10 # foo() #主进程执行一下函数就可以访问到了
11 print(q.get())
示例2:
1 import multiprocessing
2
3 def foo():
4 q.put([11,'hello',True])
5 print(q.qsize())
6
7 if __name__ == '__main__':
8 q = multiprocessing.Queue() #主进程创建一个q进程队列
9 p=multiprocessing.Process(target=foo,args=()) #因为名称空间不同,子进程的主线程找不到q队列,所以会报错提示没有q
10 p.start()
11 print(q.get())
示例3:
1 import multiprocessing
2
3 def foo(argument): #定义函数处理进程队列
4 argument.put([11,'hello',True])
5 print(argument.qsize())
6 q = multiprocessing.Queue() #全局定义一个进程队列
7 print('test')
8
9 if __name__ == '__main__':
10 x = multiprocessing.Queue() #主进程定义一个进程队列
11 p=multiprocessing.Process(target=foo,args=(x,)) #主进程把值传给子进程就可以处理了
12 p.start()
13 print(x.get())
14 # foo(q)
15 # print(q.get())
常用方法
q.put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
q.get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常.
q.get_nowait():同q.get(False)
q.put_nowait():同q.put(False)
q.empty():调用此方法时q为空则返回True,该结果不可靠,比如在返回True的过程中,如果队列中又加入了项目。
q.full():调用此方法时q已满则返回True,该结果不可靠,比如在返回True的过程中,如果队列中的项目被取走。
q.qsize():返回队列中目前项目的正确数量,结果也不可靠,理由同q.empty()和q.full()一样
其他方法
q.cancel_join_thread():不会在进程退出时自动连接后台线程。可以防止join_thread()方法阻塞
q.close():关闭队列,防止队列中加入更多数据。调用此方法,后台线程将继续写入那些已经入队列但尚未写入的数据,但将在此方法完成时马上关闭。如果q被垃圾收集,将调用此方法。关闭队列不会在队列使用者中产生任何类型的数据结束信号或异常。例如,如果某个使用者正在被阻塞在get()操作上,关闭生产者中的队列不会导致get()方法返回错误。
q.join_thread():连接队列的后台线程。此方法用于在调用q.close()方法之后,等待所有队列项被消耗。默认情况下,此方法由不是q的原始创建者的所有进程调用。调用q.cancel_join_thread方法可以禁止这种行为
另一个创建进程队列的类
http://www.cnblogs.com/zero527/p/7211909.html
管道pipe
管道就是管道,就像生活中的管道,两头都能进能出
默认管道是全双工的,如果创建管道的时候映射成False,左边只能用于接收,右边只能用于发送,类似于单行道
最简单的管道双向通信示例:
1 import multiprocessing
2
3 def foo(sk):
4 sk.send('hello world')
5 print(sk.recv())
6
7 if __name__ == '__main__':
8 conn1,conn2=multiprocessing.Pipe() #开辟两个口,都是能进能出,括号中如果False即单向通信
9 p=multiprocessing.Process(target=foo,args=(conn1,)) #子进程使用sock口,调用foo函数
10 p.start()
11 print(conn2.recv()) #主进程使用conn口接收
12 conn2.send('hi son') #主进程使用conn口发送
常用方法
conn1.recv():接收conn2.send(obj)发送的对象。如果没有消息可接收,recv方法会一直阻塞。如果连接的另外一端已经关闭,那么recv方法会抛出EOFError。
conn1.send(obj):通过连接发送对象。obj是与序列化兼容的任意对象
注意:send()和recv()方法使用pickle模块对对象进行序列化
其他方法
conn1.close():关闭连接。如果conn1被垃圾回收,将自动调用此方法,不用的时候两边都要close conn1.fileno():返回连接使用的整数文件描述符 conn1.poll([timeout]):如果连接上的数据可用,返回True。timeout指定等待的最长时限。如果省略此参数,方法将立即返回结果。如果将timeout射成None,操作将无限期地等待数据到达。 conn1.recv_bytes([maxlength]):接收c.send_bytes()方法发送的一条完整的字节消息。maxlength指定要接收的最大字节数。如果进入的消息,超过了这个最大值,将引发IOError异常,并且在连接上无法进行进一步读取。如果连接的另外一端已经关闭,再也不存在任何数据,将引发EOFError异常。 conn.send_bytes(buffer [, offset [, size]]):通过连接发送字节数据缓冲区,buffer是支持缓冲区接口的任意对象,offset是缓冲区中的字节偏移量,而size是要发送字节数。结果数据以单条消息的形式发出,然后调用c.recv_bytes()函数进行接收 conn1.recv_bytes_into(buffer [, offset]):接收一条完整的字节消息,并把它保存在buffer对象中,该对象支持可写入的缓冲区接口(即bytearray对象或类似的对象)。offset指定缓冲区中放置消息处的字节位移。返回值是收到的字节数。如果消息长度大于可用的缓冲区空间,将引发BufferTooShort异常。
注意:生产者和消费者都没有使用管道的某个端点,就应该将其关闭,如在生产者中关闭管道的右端,在消费者中关闭管道的左端。如果忘记执行这些步骤,程序可能再消费者中的recv()操作上挂起。管道是由操作系统进行引用计数的,必须在所有进程中关闭管道后才能生产EOFError异常。因此在生产者中关闭管道不会有任何效果,付费消费者中也关闭了相同的管道端点。
共享数据manage
Queue和pipe只是实现了数据交互,并没实现数据共享,即一个进程去更改另一个进程的数据。
注:进程间通信应该尽量避免使用共享数据的方式
共享数据:列表
1 from multiprocessing import Manager,Process
2 def foo(l,i):
3 l.append(i**i)
4 if __name__ == '__main__':
5 man=Manager()
6 ml=man.list([11,22,33])
7 l=[]
8 for i in range(5):
9 p=Process(target=foo,args=(ml,i))
10 p.start()
11 l.append(p)
12 for i in l: #必须要join,不然会执行报错,处理一个数据必须要一个个来,不能同时处理一个数据
13 i.join()
14 print(ml)
共享数据:字典
1 from multiprocessing import Manager,Process
2 def foo(d,k,v):
3 d[k]=v
4 if __name__ == '__main__':
5 man=Manager()
6 md=man.dict({'name':'bob'})
7 l=[]
8 for i in range(5):
9 p=Process(target=foo,args=(md,i,'a'))
10 p.start()
11 l.append(p)
12 for i in l: #必须要join,不然会执行报错,处理一个数据必须要一个个来,不能同时处理一个数据
13 i.join()
14 print(md)
进程池
开多进程是为了并发,通常有几个cpu核心就开几个进程,但是进程开多了会影响效率,主要体现在切换的开销,所以引入进程池限制进程的数量。
进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。
示例:
1 from multiprocessing import Pool
2 import time
3
4 def foo(n):
5 print(n)
6 time.sleep(1)
7
8 if __name__ == '__main__':
9 pool_obj=Pool(5) #
10 for i in range(47):
11 # pool_obj.apply_async(func=foo,args=(i,))
12 pool_obj.apply(func=foo,args=(i,)) #子进程的生成是靠进程池对象维护的
13 # apply同步,子进程一个个执行
14 # apply_async异步,多个子进程一起执行
15 pool_obj.close()
16 pool_obj.join()
17 print('ending')
常用方法:
pool_obj.apply(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。需要强调的是:此操作并不会在所有池工作进程中并执行func函数。如果要通过不同参数并发地执行func函数,必须从不同线程调用p.apply()函数或者使用p.apply_async()
pool_obj.apply_async(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传递给callback。callback禁止执行任何阻塞操作,否则将接收其他异步操作中的结果。
pool_obj.close():关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成
pool_obj.jion():等待所有工作进程退出。此方法只能在close()或teminate()之后调用
其他方法:
方法apply_async()和map_async()的返回值是AsyncResul的实例obj。实例具有以下方法
obj.get():返回结果,如果有必要则等待结果到达。timeout是可选的。如果在指定时间内还没有到达,将引发一场。如果远程操作中引发了异常,它将在调用此方法时再次被引发。
obj.ready():如果调用完成,返回True
obj.successful():如果调用完成且没有引发异常,返回True,如果在结果就绪之前调用此方法,引发异常
obj.wait([timeout]):等待结果变为可用。
obj.terminate():立即终止所有工作进程,同时不执行任何清理或结束任何挂起工作。如果p被垃圾回收,将自动调用此函数
协程
协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。
一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。
协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。
注意:
1. python的线程属于内核级别的,即由操作系统控制调度(如单线程一旦遇到io就被迫交出cpu执行权限,切换其他线程运行)
2. 单线程内开启协程,一旦遇到io,从应用程序级别(而非操作系统)控制切换
协程优点:
1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
2. 单线程内就可以实现并发的效果,最大限度地利用cpu
协程缺点:
1.协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
2.协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程
yield实现协程并发
1 import time
2 def consumer():
3 r=''
4 while True:
5 n=yield r
6 if not n:
7 return
8 print('[CONSUMER] ←← Consuming %s...' % n)
9 time.sleep(1)
10 r='200 Ok'
11
12 def produce(c):
13 next(c) #1.启动生成器
14 n=0
15 while n < 5:
16 n=n+1
17 print('[PRODUCER] →→ Producing %s...' % n)
18 cr=c.send(n)
19 #2.将n传入到consumer的对象,yield接收到传入值开始执行代码,遇到yield执行代码返回r的值
20 print('[PRODUCER] Consumer return: %s' % cr)
21 #3.produce没有值了,关闭整个过程
22 c.close()
23
24 if __name__ == '__main__':
25 c=consumer() #生成生成器对象
26 produce(c) #执行调用
greenlet框架实现协程(封装yield的基础库)
greenlet机制的主要思想是:生成器函数或者协程函数中的yield语句挂起函数的执行,直到稍后使用next()或send()操作进行恢复为止。可以使用一个调度器循环在一组生成器函数之间协作多个任务。greentlet是python中实现我们所谓的"Coroutine(协程)"的一个基础库。
示例1:
1 from greenlet import greenlet
2 def foo():
3 print('ok1')
4 g2.switch() #阻断
5 print('ok3')
6 g2.switch()
7 def bar():
8 print('ok2')
9 g1.switch()
10 print('ok4')
11
12 g1=greenlet(foo) #生成foo函数的greenlet对象
13 g2=greenlet(bar) #生成bar函数的greenlet对象
14 g1.switch() #1、执行g1对象,打印ok1
15 #2、遇到g2.switch(),转到g2执行打印ok2
16 #3、遇到g1.switch(),转到g1的阻断处继续执行打印ok3
17 #4、遇到g2.switch(),转到g2执行打印ok4
示例2:
1 def eat(name):
2 print('%s eat food 1' %name)
3 gr2.switch('bob')
4 print('%s eat food 2' %name)
5 gr2.switch()
6 def play_phone(name):
7 print('%s play 1' %name)
8 gr1.switch()
9 print('%s play 2' %name)
10
11 gr1=greenlet(eat)
12 gr2=greenlet(play_phone)
13 gr1.switch(name='natasha')#可以在第一次switch时传入参数,以后都不需要
这种方法不会节省时间,因为不是io操作,而greenlet遇到io操作不会跳转,仍然要io阻断
基于greenlet框架的高级库gevent模块
gevent是第三方库,通过greenlet实现协程,其基本思想是:
当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO。
由于切换是在IO操作时自动完成,所以gevent需要修改Python自带的一些标准库,这一过程在启动时通过monkey patch完成:
简单示例:
1 import gevent
2 def foo():
3 print('ok1')
4 gevent.sleep(4) #模拟io操作
5 print('ok3')
6 def bar():
7 print('ok2')
8 gevent.sleep(2)
9 print('ok4')
10
11 g1=gevent.spawn(foo)
12 g2=gevent.spawn(bar)
13 gevent.joinall([g1,g2]) #全部阻塞,或者单独一个个join
spawn括号内第一个参数是函数名,如foo,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数foo的
注意:
gevent.sleep(4)模拟的是gevent可以识别的io阻塞,
而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了
1 #补丁
2 from gevent import monkey
3 monkey.patch_all()
必须放到被打补丁者的前面,如time,socket模块之前
或者我们干脆记忆成:要用gevent,需要将补丁放到文件的开头
爬虫示例:
1 from gevent import monkey;monkey.patch_all()
2 import gevent
3 import requests
4 import time
5
6 def get_page(url):
7 print('GET: %s' %url)
8 response=requests.get(url)
9 if response.status_code == 200:
10 print('%d bytes received from %s' %(len(response.text),url))
11
12
13 start_time=time.time()
14 gevent.joinall([
15 gevent.spawn(get_page,'https://www.python.org/'),
16 gevent.spawn(get_page,'https://www.yahoo.com/'),
17 gevent.spawn(get_page,'https://github.com/'),
18 ])
19 stop_time=time.time()
20 print('run time is %s' %(stop_time-start_time))
Python、进程间通信、进程池、协程的更多相关文章
- python的进程/线程/协程
1.python的多线程 多线程就是在同一时刻执行多个不同的程序,然而python中的多线程并不能真正的实现并行,这是由于cpython解释器中的GIL(全局解释器锁)捣的鬼,这把锁保证了同一时刻只有 ...
- python进阶——进程/线程/协程
1 python线程 python中Threading模块用于提供线程相关的操作,线程是应用程序中执行的最小单元. #!/usr/bin/env python # -*- coding:utf-8 - ...
- python GIL全局解释器锁,多线程多进程效率比较,进程池,协程,TCP服务端实现协程
GIL全局解释器锁 ''' python解释器: - Cpython C语言 - Jpython java ... 1.GIL: 全局解释器锁 - 翻译: 在同一个进程下开启的多线程,同一时刻只能有一 ...
- Python 线程&进程与协程
Python 的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语言的一种继承.Py ...
- python3多进程 进程池 协程并发
一.进程 我们电脑的应用程序,都是进程,进程是资源分配的单位.进程切换需要的资源最大,效率低. 进程之间相互独立 cpu密集的时候适合用多进程 #多 ...
- 多任务-python实现-进程,协程,线程总结(2.1.16)
@ 目录 1.类比 2.总结 关于作者 1.类比 一个生产玩具的工厂: 一个生产线成为一个进程,一个生产线有多个工人,所以工人为线程 单进程-多线程:一条生产线,多个工人 多进程-多线程:多条生产线, ...
- Python中进程线程协程小结
进程与线程的概念 进程 程序仅仅只是一堆代码而已,而进程指的是程序的运行过程.需要强调的是:同一个程序执行两次,那也是两个进程. 进程:资源管理单位(容器). 线程:最小执行单位,管理线程的是进程. ...
- python运维开发(十一)----线程、进程、协程
内容目录: 线程 基本使用 线程锁 自定义线程池 进程 基本使用 进程锁 进程数据共享 进程池 协程 线程 线程使用的两种方式,一种为我们直接调用thread模块上的方法,另一种我们自定义方式 方式一 ...
- python自动化开发学习 进程, 线程, 协程
python自动化开发学习 进程, 线程, 协程 前言 在过去单核CPU也可以执行多任务,操作系统轮流让各个任务交替执行,任务1执行0.01秒,切换任务2,任务2执行0.01秒,在切换到任务3,这 ...
- Python之线程、进程和协程
python之线程.进程和协程 目录: 引言 一.线程 1.1 普通的多线程 1.2 自定义线程类 1.3 线程锁 1.3.1 未使用锁 1.3.2 普通锁Lock和RLock 1.3.3 信号量(S ...
随机推荐
- vue element-UI 升级报错Cannot find module "element-ui/lib/theme-default/index.css"
饿了么 用之前的版本 有些组件跟api 不一样了所以更新了最新的版本,发现 报一堆错误 主要错误是这个 Cannot find module "element-ui/lib/theme-de ...
- Brup Suite 渗透测试笔记(六)
接上次笔记这章记payload的类型分类做一说明: 1.simplelist是一个简单的payload类型,通过配置一个字符串作为payload,也可以手动添加字符串列表. 2.运行文件 Runtim ...
- Vue-cli添加全局js
1.填写全局config.js function getConfig(str){ var ajaxurl = "http://112.80.39.92:8008/webservices/re ...
- 反序列化json的坑
json格式没有错误,内容没有什么异常 反序列化一直显示第一行有异常符号, 在https://jsonlint.com/上面检测了一下,发现了这个 解决办法: UTF-8格式编码 改成 UTF-8无B ...
- JAVA追加写入文本文件
public void method1() { FileWriter fw = null; try { //如果文件存在,则追加内容:如果文件不存在,则创建文件 File f=new File(&qu ...
- 史上最简单的SpringCloud教程 | 第七篇: 高可用的分布式配置中心(Spring Cloud Config)
上一篇文章讲述了一个服务如何从配置中心读取文件,配置中心如何从远程git读取配置文件,当服务实例很多时,都从配置中心读取文件,这时可以考虑将配置中心做成一个微服务,将其集群化,从而达到高可用,架构图如 ...
- expect 安装 salt 客户端
#!/bin/bash for i in $(cat ./host.txt) do echo $i > ./tmp.txt HOSTNAME=$(cut -d ':' -f1 ./tmp.txt ...
- 494. Target Sum
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...
- 一脸懵逼学习oracle
oracle的默认用户:system,sys,scott: 1:查看登录的用户名:show user: 2:查看数据字典:dba_users; 3:创建新用户 (1)要连接到Oracle数据库,就需要 ...
- Visual Studio 2012 Update 3
不知道是不是都关注Win8.1和Visual Studio 2013 preview去了… 貌似没大有人发现2012的update3在update2后2月就出了… ms明显加快了开发速度额… KB a ...