数据倾斜解决方案

数据倾斜的解决,跟之前讲解的性能调优,有一点异曲同工之妙。

性能调优中最有效最直接最简单的方式就是加资源加并行度,并注意RDD架构(复用同一个RDD,加上cache缓存)。相对于前面,shuffle、jvm等是次要的。

6.1、原理以及现象分析

6.1.1、数据倾斜怎么出现的

在执行shuffle操作的时候,是按照key,来进行values的数据的输出、拉取和聚合的。

同一个key的values,一定是分配到一个reduce task进行处理的。

多个key对应的values,比如一共是90万。可能某个key对应了88万数据,被分配到一个task上去面去执行。

另外两个task,可能各分配到了1万数据,可能是数百个key,对应的1万条数据。

这样就会出现数据倾斜问题。

想象一下,出现数据倾斜以后的运行的情况。很糟糕!

其中两个task,各分配到了1万数据,可能同时在10分钟内都运行完了。另外一个task有88万条,88 * 10 =  880分钟 = 14.5个小时。

大家看,本来另外两个task很快就运行完毕了(10分钟),但是由于一个拖后腿的家伙,第三个task,要14.5个小时才能运行完,就导致整个spark作业,也得14.5个小时才能运行完。

数据倾斜,一旦出现,是不是性能杀手?!

6.1.2、发生数据倾斜以后的现象

Spark数据倾斜,有两种表现:

1、你的大部分的task,都执行的特别特别快,(你要用client模式,standalone client,yarn client,本地机器一执行spark-submit脚本,就会开始打印log),task175 finished,剩下几个task,执行的特别特别慢,前面的task,一般1s可以执行完5个,最后发现1000个task,998,999 task,要执行1个小时,2个小时才能执行完一个task。

出现以上loginfo,就表明出现数据倾斜了。

这样还算好的,因为虽然老牛拉破车一样非常慢,但是至少还能跑。

2、另一种情况是,运行的时候,其他task都执行完了,也没什么特别的问题,但是有的task,就是会突然间报了一个OOM,JVM Out Of Memory,内存溢出了,task failed,task lost,resubmitting task。反复执行几次都到了某个task就是跑不通,最后就挂掉。

某个task就直接OOM,那么基本上也是因为数据倾斜了,task分配的数量实在是太大了!所以内存放不下,然后你的task每处理一条数据,还要创建大量的对象,内存爆掉了。

这样也表明出现数据倾斜了。

这种就不太好了,因为你的程序如果不去解决数据倾斜的问题,压根儿就跑不出来。

作业都跑不完,还谈什么性能调优这些东西?!

6.1.3、定位数据倾斜出现的原因与出现问题的位置

根据log去定位

出现数据倾斜的原因,基本只可能是因为发生了shuffle操作,在shuffle的过程中,出现了数据倾斜的问题。因为某个或者某些key对应的数据,远远的高于其他的key。

1、你在自己的程序里面找找,哪些地方用了会产生shuffle的算子,groupByKey、countByKey、reduceByKey、join

2、看log

log一般会报是在你的哪一行代码,导致了OOM异常。或者看log,看看是执行到了第几个stage。spark代码,是怎么划分成一个一个的stage的。哪一个stage生成的task特别慢,就能够自己用肉眼去对你的spark代码进行stage的划分,就能够通过stage定位到你的代码,到底哪里发生了数据倾斜。

1、使用Hive ETL预处理数据

方案适用场景:

如果导致数据倾斜的是Hive表。如果该Hive表中的数据本身很不均匀(比如某个key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spark对Hive表执行某个分析操作,那么比较适合使用这种技术方案。

方案实现思路:

此时可以评估一下,是否可以通过Hive来进行数据预处理(即通过Hive ETL预先对数据按照key进行聚合,或者是预先和其他表进行join),然后在Spark作业中针对的数据源就不是原来的Hive表了,而是预处理后的Hive表。此时由于数据已经预先进行过聚合或join操作了,那么在Spark作业中也就不需要使用原先的shuffle类算子执行这类操作了。

方案实现原理:

这种方案从根源上解决了数据倾斜,因为彻底避免了在Spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题了。但是这里也要提醒一下大家,这种方式属于治标不治本。因为毕竟数据本身就存在分布不均匀的问题,所以Hive ETL中进行group by或者join等shuffle操作时,还是会出现数据倾斜,导致Hive ETL的速度很慢。我们只是把数据倾斜的发生提前到了Hive ETL中,避免Spark程序发生数据倾斜而已。

2、过滤少数导致倾斜的key

方案适用场景:

如果发现导致倾斜的key就少数几个,而且对计算本身的影响并不大的话,那么很适合使用这种方案。比如99%的key就对应10条数据,但是只有一个key对应了100万数据,从而导致了数据倾斜。

方案实现思路:

如果我们判断那少数几个数据量特别多的key,对作业的执行和计算结果不是特别重要的话,那么干脆就直接过滤掉那少数几个key。比如,在Spark SQL中可以使用where子句过滤掉这些key或者在Spark Core中对RDD执行filter算子过滤掉这些key。如果需要每次作业执行时,动态判定哪些key的数据量最多然后再进行过滤,那么可以使用sample算子对RDD进行采样,然后计算出每个key的数量,取数据量最多的key过滤掉即可。

方案实现原理:

将导致数据倾斜的key给过滤掉之后,这些key就不会参与计算了,自然不可能产生数据倾斜。

3、提高shuffle操作的并行度

方案实现思路:

在对RDD执行shuffle算子时,给shuffle算子传入一个参数,比如reduceByKey(1000),该参数就设置了这个shuffle算子执行时shuffle read task的数量。对于Spark SQL中的shuffle类语句,比如group by、join等,需要设置一个参数,即spark.sql.shuffle.partitions,该参数代表了shuffle read task的并行度,该值默认是200,对于很多场景来说都有点过小。

方案实现原理:

增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。举例来说,如果原本有5个不同的key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了。

4、双重聚合

方案适用场景:

对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案。

方案实现思路:

这个方案的核心实现思路就是进行两阶段聚合。第一次是局部聚合,先给每个key都打上一个随机数,比如10以内的随机数,此时原先一样的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合,那么局部聚合结果,就会变成了(1_hello, 2) (2_hello, 2)。然后将各个key的前缀给去掉,就会变成(hello,2)(hello,2),再次进行全局聚合操作,就可以得到最终结果了,比如(hello, 4)。

方案实现原理:

将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。如果一个RDD中有一个key导致数据倾斜,同时还有其他的key,那么一般先对数据集进行抽样,然后找出倾斜的key,再使用filter对原始的RDD进行分离为两个RDD,一个是由倾斜的key组成的RDD1,一个是由其他的key组成的RDD2,那么对于RDD1可以使用加随机前缀进行多分区多task计算,对于另一个RDD2正常聚合计算,最后将结果再合并起来。

随机前缀加几,ReduceByKey分几个区。

5、将reduce join转为map join(彻底避免数据倾斜)

BroadCast+filter(或者map)

方案适用场景:

在对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(比如几百M或者一两G),比较适用此方案。

方案实现思路:

不使用join算子进行连接操作,而使用Broadcast变量与map类算子实现join操作,进而完全规避掉shuffle类的操作,彻底避免数据倾斜的发生和出现。将较小RDD中的数据直接通过collect算子拉取到Driver端的内存中来,然后对其创建一个Broadcast变量;接着对另外一个RDD执行map类算子,在算子函数内,从Broadcast变量中获取较小RDD的全量数据,与当前RDD的每一条数据按照连接key进行比对,如果连接key相同的话,那么就将两个RDD的数据用你需要的方式连接起来。

方案实现原理:

普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。

6、采样倾斜key并分拆join操作

方案适用场景:

两个RDD/Hive表进行join的时候,如果数据量都比较大,无法采用“解决方案五”,那么此时可以看一下两个RDD/Hive表中的key分布情况。如果出现数据倾斜,是因为其中某一个RDD/Hive表中的少数几个key的数据量过大,而另一个RDD/Hive表中的所有key都分布比较均匀,那么采用这个解决方案是比较合适的。

方案实现思路:

对包含少数几个数据量过大的key的那个RDD,通过sample算子采样出一份样本来,然后统计一下每个key的数量,计算出来数据量最大的是哪几个key。然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个key都打上n以内的随机数作为前缀,而不会导致倾斜的大部分key形成另外一个RDD。接着将需要join的另一个RDD,也过滤出来那几个倾斜key对应的数据并形成一个单独的RDD,将每条数据膨胀成n条数据,这n条数据都按顺序附加一个0~n的前缀,不会导致倾斜的大部分key也形成另外一个RDD。再将附加了随机前缀的独立RDD与另一个膨胀n倍的独立RDD进行join,此时就可以将原先相同的key打散成n份,分散到多个task中去进行join了。而另外两个普通的RDD就照常join即可。最后将两次join的结果使用union算子合并起来即可,就是最终的join结果 。

7、使用随机前缀和扩容RDD进行join

方案适用场景:

如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义,此时就只能使用最后一种方案来解决问题了。

方案实现思路:

该方案的实现思路基本和“解决方案六”类似,首先查看RDD/Hive表中的数据分布情况,找到那个造成数据倾斜的RDD/Hive表,比如有多个key都对应了超过1万条数据。然后将该RDD的每条数据都打上一个n以内的随机前缀。同时对另外一个正常的RDD进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。最后将两个处理后的RDD进行join即可。

spak数据倾斜解决方案的更多相关文章

  1. 【Spark调优】大表join大表,少数key导致数据倾斜解决方案

    [使用场景] 两个RDD进行join的时候,如果数据量都比较大,那么此时可以sample看下两个RDD中的key分布情况.如果出现数据倾斜,是因为其中某一个RDD中的少数几个key的数据量过大,而另一 ...

  2. 【Spark调优】小表join大表数据倾斜解决方案

    [使用场景] 对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(例如几百MB或者1~2GB),比较适用此方案. [解决方案] ...

  3. Hadoop基础-MapReduce的数据倾斜解决方案

    Hadoop基础-MapReduce的数据倾斜解决方案 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.数据倾斜简介 1>.什么是数据倾斜 答:大量数据涌入到某一节点,导致 ...

  4. 最完整的数据倾斜解决方案(spark)

    一.了解数据倾斜 数据倾斜的原理: 在执行shuffle操作的时候,按照key,来进行values的数据的输出,拉取和聚合.同一个key的values,一定是分配到一个Reduce task进行处理. ...

  5. spark中数据倾斜解决方案

    数据倾斜导致的致命后果: 1 数据倾斜直接会导致一种情况:OOM. 2 运行速度慢,特别慢,非常慢,极端的慢,不可接受的慢. 搞定数据倾斜需要: 1.搞定shuffle 2.搞定业务场景 3 搞定 c ...

  6. spark完整的数据倾斜解决方案

    1.数据倾斜的原理 2.数据倾斜的现象 3.数据倾斜的产生原因与定位 在执行shuffle操作的时候,大家都知道,我们之前讲解过shuffle的原理. 是按照key,来进行values的数据的输出.拉 ...

  7. Spark数据倾斜解决方案及shuffle原理

    数据倾斜调优与shuffle调优 数据倾斜发生时的现象 1)个别task的执行速度明显慢于绝大多数task(常见情况) 2)spark作业突然报OOM异常(少见情况) 数据倾斜发生的原理 在进行shu ...

  8. Spark数据倾斜解决方案(转)

    本文转发自技术世界,原文链接 http://www.jasongj.com/spark/skew/ Spark性能优化之道——解决Spark数据倾斜(Data Skew)的N种姿势  发表于 2017 ...

  9. Hive的HQL语句及数据倾斜解决方案

    [版权申明:本文系作者原创,转载请注明出处] 文章出处:http://blog.csdn.net/sdksdk0/article/details/51675005 作者: 朱培          ID ...

随机推荐

  1. python的bit_length方法

    bit_length方法作用是得到指定数值的二进制的长度数.宽度数 举例: age=1 v=age.bit_length() print(v) 返回结果: 1    #数值1对应的二进制是1,长度1位 ...

  2. 国内安装helm

    helm repo remove stable helm repo add stable https://kubernetes.oss-cn-hangzhou.aliyuncs.com/charts ...

  3. innodb 关键特性(insert buffer)

    一.insert buffer 性能改善 insert buffer和数据页一样,也是物理页的一个组成部分. 在innodb存储引擎中,主键是行唯一的标识符.通常应用程序中行记录的插入顺序是按照主键递 ...

  4. H-Modify Minieye杯第十五届华中科技大学程序设计邀请赛现场赛

    题面见 https://ac.nowcoder.com/acm/contest/700#question 题目大意是有n个单词,有k条替换规则(单向替换),每个单词会有一个元音度(单词里元音的个数)和 ...

  5. MAC终端如何使用rar和unrar

    一.MAC具体安装见下面两个博客分享: Homebrew介绍和使用:https://www.jianshu.com/p/de6f1d2d37bf Mac 压缩 / 解压缩工具解决方案:https:// ...

  6. redis哨兵集群

    Sentinel 哨兵 修改src下的sentinel.conf文件 , 配置端口  :port:随便   daemonize yes 配置主服务器的ip 和端口 我们把监听的端口修改成7000,并且 ...

  7. SQL 数据库高CPU占用语句排查

    前述 最近一个项目CPU占用非常高,在IIS内设置CPU限制后系统频繁掉线,通过任务管理器发现SQLSever数据库占用CPU达到40%--70%,对于数据库本人也就处在增删查改几个操作水平层面,这次 ...

  8. Taro button点击切换选中状态

    1.引入组件 2.state中设置选中状态 // button按钮的默认选中,0代表选中 state = { currentIndex: 0 } 3.设置class的样式,点击更改选中 selectN ...

  9. mongocxx-driver编译安装

    1. 确保安装epel yum install -y epel-release 2. 按照<CentOS7.2部署node-mapnik>一文中的步骤,手动安装 gcc-6.2.0 和 b ...

  10. 有关ajax的理解;

    jQuery是JavaScript封装的一个库,里面封装了一些便于我们使用的方法,同时还有$.ajax()的一些理解需要我们更加深入了解 ajax简介: 实现后台与前台交互的功能或方法就叫做ajax: ...