import matplotlib.pyplot as plt
import numpy as np x = np.linspace(start=0.5, stop=3.5, num=100)
y = np.sin(x)
y1 = np.random.randn(100) plt.scatter(x, y1, c='0.25', label='scatter figure')
plt.plot(x, y, ls='--', lw=2, label='plot figure')
for spine in plt.gca().spines.keys():
if spine == 'top' or spine == 'right':
plt.gca().spines[spine].set_color('none')
plt.gca().xaxis.set_ticks_position('bottom')
plt.gca().yaxis.set_ticks_position('left')
plt.xlim(left=0.0, right=4.0)
plt.ylim(bottom=-3.0, top=3.0)
plt.xlabel('x_label')
plt.ylabel('y_label')
plt.grid(True, ls=':', color='r')
plt.axhline(y=0.0, c='r', ls='--', lw=2)
plt.axvspan(xmin=1.0, xmax=2.0, facecolor='y', alpha=0.3)
plt.annotate('maximum', xy=(np.pi/2, 1.0), xytext=((np.pi/2)+0.15, 1.5), weight='bold', color='r', arrowprops=dict(arrowstyle='->', connectionstyle='arc3', color='r'))
plt.annotate('spines', xy=(0.75, -3), xytext=(0.35, -2.25), weight='bold', color='b', arrowprops=dict(arrowstyle='->', connectionstyle='arc3', color='b'))
plt.annotate('', xy=(0, -2.78), xytext=(0.4, -2.32), arrowprops=dict(arrowstyle='->', connectionstyle='arc3', color='b'))
plt.annotate('', xy=(3.5, -2.98), xytext=(3.6, -2.7), arrowprops=dict(arrowstyle='->', connectionstyle='arc3', color='b'))
plt.text(3.6, -2.7, "'|' is tickline", weight='bold', color='b')
plt.text(3.6, -2.95, '3.5 is ticklabel', weight='bold', color='b')
plt.title('structure of matplotlib')
plt.legend(loc='upper right')
plt.show()

python 数据可视化 -- matplotlib02的更多相关文章

  1. Python数据可视化编程实战——导入数据

    1.从csv文件导入数据 原理:with语句打开文件并绑定到对象f.不必担心在操作完资源后去关闭数据文件,with的上下文管理器会帮助处理.然后,csv.reader()方法返回reader对象,通过 ...

  2. Python数据可视化——使用Matplotlib创建散点图

    Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D ...

  3. Python数据可视化-seaborn库之countplot

    在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是s ...

  4. Python数据可视化编程实战pdf

    Python数据可视化编程实战(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1vAvKwCry4P4QeofW-RqZ_A 提取码:9pcd 复制这段内容后打开百度 ...

  5. 【数据科学】Python数据可视化概述

    注:很早之前就打算专门写一篇与Python数据可视化相关的博客,对一些基本概念和常用技巧做一个小结.今天终于有时间来完成这个计划了! 0. Python中常用的可视化工具 Python在数据科学中的地 ...

  6. Python数据可视化的四种简易方法

    摘要: 本文讲述了热图.二维密度图.蜘蛛图.树形图这四种Python数据可视化方法. 数据可视化是任何数据科学或机器学习项目的一个重要组成部分.人们常常会从探索数据分析(EDA)开始,来深入了解数据, ...

  7. python --数据可视化(一)

    python --数据可视化 一.python -- pyecharts库的使用 pyecharts--> 生成Echarts图标的类库 1.安装: pip install pyecharts ...

  8. python 数据可视化

    一.基本用法 import numpy as np import matplotlib.pyplot as plt x = np.linspace(-1,1,50) # 生成-1到1 ,平分50个点 ...

  9. 【python可视化系列】python数据可视化利器--pyecharts

    学可视化就跟学弹吉他一样,刚开始你会觉得自己弹出来的是噪音,也就有了在使用python可视化的时候,总说,我擦,为啥别人画的图那么溜: [python可视化系列]python数据可视化利器--pyec ...

随机推荐

  1. 直达核心的快速学习PHP入门技巧

    PHP(外文名:PHP: Hypertext Preprocessor,中文名:“超文本预处理器”)是一种通用开源脚本语言.语法吸收了C语言.Java和Perl的特点,利于学习,使用广泛,是目前最火的 ...

  2. js 序列化

    Python 序列化 字符串 = json.dumps(对象)  对象转字符串 对象 = json.loads(字符串)   字符串转对象 Javascript 字符串 = JSON.stringif ...

  3. scala 读取保存文件 去除字符特殊

    /** * 读取文件 * @param filename * @return */ def readFormFile(filename: String) = { var ooop = "&q ...

  4. js常用身份校验规则

    js常用身份校验规则 var Validator = { extractBirth: function(id) { // 身份证提取出生年月 var re = null, split, year, m ...

  5. ubuntu下挂载物理分区到openmediavault4

    准备弄个NAS,但还没想好直接买现成,还是自己组装一台,先在虚拟机上体验下OpenMediaVault4和黑群晖.主系统是ubuntu,但刚买的时候这笔记本是装windows的,除了ubuntu的系统 ...

  6. spring三大核心

    IOC(控制反转) 下面是多个针对此理解的表达. 一个对象A依赖另一个对象B就要自己去new 这是高度耦合的 IOC容器的使用. 比如在B中使用A很多,哪一天A大量更改,那么B中就要修改好多代码. 通 ...

  7. Ingress介绍与安装配置

    在 Kubernetes 集群中,Ingress是授权入站连接到达集群服务的规则集合,为您提供七层负载均衡能力.您可以给 Ingress 配置提供外部可访问的 URL.负载均衡.SSL.基于名称的虚拟 ...

  8. [Flutter] Windows/MacOS Flutter 环境走一遍

    Windows Install 1.系统需要:> win7 > 400M磁盘空间 Windows PowerShell(Windows 搜索框中找) Git for Windows 2.x ...

  9. 从servlet规范说起

    servlet规范 1 servlet 3.1规范 1.1 What is servlet A servlet is a JavaTM technology-based Web component, ...

  10. 20175213 2018-2019-2 《Java程序设计》第4周学习总结

    ## 教材学习内容总结 在第四周的学习过程中,我学习了第五章的内容. 第五章内容总结: 1.子类继承的方法只能操作子类继承和隐藏的成员变量. 2.子类和父类在同一包的继承性 子类自然继承了其父类中不是 ...