NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Numpy内部解除了Python的PIL(全局解释器锁),运算效率极好,是大量机器学习框架的基础库!

安装命令为:pip install numpy

编辑器中具体代码如下:

#导入numpy 库
import numpy as np
#打印版本号
# print(np.version.version)
#声明一个numpy 一维数组
nlist = np.array([1,2,3])
print(nlist)
#ndim方法用来查看数组维度
print(nlist.ndim)
print('==================')
#声明一个二维数组
nlist_2 = np.array([[1,2,3,4],[4,5,6,7]])
print(nlist_2)
print(nlist_2.ndim)
print('==================')
#使用shape 属性打印多维数组得形状
print(nlist.shape)
print(nlist_2.shape)
print('==================')
#使用size方法来打印多维数组得元素个数
print(np.size(nlist))
print(np.size(nlist_2))
print('==================')
#打印numpy多维数组得数据类型
#打印普通list
print(type([1,2,3]))
print(type(nlist))
print('==================')
#使用dtype属性来打印多维数组内部元素得数据类型
print(type(123))
print(nlist.dtype)
print('==================22222222222')
#itemsize属性,来打印多维数组中得数据类型大小,字节
print(nlist.itemsize)
print('==================11111')
#data属性,用来打印数据缓冲区 buffer
print(nlist.data)
print('==================')
#声明三维数组
nlist_3 = np.array([[[1,2,3],[4,5,6],[7,8,9,]]])
print(nlist_3.ndim)
print('==================')
#使用reshape方法来反向生成多维数组
nlist_4 = np.array(range(32)).reshape(4,2,2,2)
print(nlist_4)
print(nlist_4.ndim)
print('==================')
#使用浮点作为元素类型
nlist_float = np.array([1.0,2.0,3.0])
print(nlist_float.dtype)
print('==================')
#使用字符串
nlist_string = np.array(['1','2','3'])
print(nlist_string.dtype)
print('==================')

#使用ones方法 自动生成元素为1 的所谓数组
nlist_ones = np.ones((4,4))
print(nlist_ones)
print((nlist_ones.dtype))
print('==================')
#使用zero来生成元素为0的数组
 
nlist_zeros = np.zeros((4,4))
print((nlist_zeros))
print(nlist_zeros.dtype)
print('==================')
#使用 empty 生成多维随机数组,使用第二个参数指定数据类型
nlist_empty = np.empty([2,2],dtype=np.int)
print((nlist_empty))
print(nlist_empty.dtype)
print((nlist_empty.ndim))
print('==================')
#把普通list转换为数组
x = [1,2,3]
x = [(1,2,3),(4,5)]
print(type(x))
nlist = np.asarray(x)
print(type(nlist))
print(nlist.ndim)
print(nlist.shape)
print('==================')
# frombuffer 通过字符串(buffer内存地址)切片来生成多维数组
my_str = b'hello world'
nlist_str = np.frombuffer(my_str,dtype='S1')
print(nlist_str)
print('==================')
x = np.array([[1,2],[3,4]])
print(x)
#指定axis属性可以指定当前多维数组的维度 sum是跨维度列级求和
sum0 = np.sum(x,axis=0,keepdims=True) # axis=0 是跨维度列级相加
print(sum0)
sum1 = np.sum(x,axis=1,keepdims=True) # axis = 跨维度行级相加
print(sum1)
print('==================')
#多维数组赋值 根据列表下标原理
y = np.array([1,2])
z = y.copy()
y[0] = 3
y[1] = 3
print(z)
print('==================')
#维度级的运算
a = np.array([[1,2],[3,4],[5,6]])
b = np.array([[11,21],[13,41],[15,61]])
#vasack方法 (添加)
suma = np.vstack((a,b))
print(suma)
#hstack方法(混和)
sumb = np.hstack((a,b))
print(sumb)
print('==================222222222222222')
#多维数组调用
nlist = np.array([[1,2],[3,4],[5,6]])
#取元素4
print(nlist[1][1])
#第二种写法
print(nlist[1,1])
#修改
nlist[2,1] = 7
print(nlist)
#删除方法 delete
# 删除nlist 第二行
print('==================')
print(np.delete(nlist,1,axis=0))
print(np.delete(nlist,0,axis=1))

机器学习三剑客之Numpy库基本操作的更多相关文章

  1. Python:机器学习三剑客之 NumPy

    一.numpy简介 Numpy是高性能科学计算和数据分析的基础包,机器学习三剑客之一.Numpy库中最核心的部分是ndarray 对象,它封装了同构数据类型的n维数组.部分功能如下: ndarray, ...

  2. Numpy 机器学习三剑客之Numpy

    NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Numpy内部解除了Python的PIL(全局解释器锁),运算效率极好,是大量机 ...

  3. 机器学习三剑客之Numpy

      Numpy NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Numpy内部解除了Python的PIL(全局解释器锁),运算效 ...

  4. 初识NumPy库-基本操作

    ndarray(N-dimensional array)对象是整个numpy库的基础. 它有以下特点: 同质:数组元素的类型和大小相同 定量:数组元素数量是确定的 一.创建简单的数组: np.arra ...

  5. 机器学习中的numpy库

            日常学习中总是遇到数据需要处理等问题,这时候我们就可以借助numpy这个工具来做一些有意思的事. 1.生成随机数的几种方式 x=np.random.random(12) ###生成12 ...

  6. 机器学习 三剑客 之 pandas + numpy

    机器学习 什么是机器学习? 机器学习是从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测 机器学习存在的目的和价值领域? 领域: 医疗.航空.教育.物流.电商 等... 目的: 让机器学习 ...

  7. numpy库常用基本操作

    NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推.在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量.比如说,二维数组相当于是一个一维数 ...

  8. 机器学习 Numpy库入门

    2017-06-28 13:56:25 Numpy 提供了一个强大的N维数组对象ndarray,提供了线性代数,傅里叶变换和随机数生成等的基本功能,可以说Numpy是Scipy,Pandas等科学计算 ...

  9. (零)机器学习入门与经典算法之numpy的基本操作

    1.根据索引来获取元素* 创建一个索引列表ind,用来装载索引,当numpy数据是一维数据时:一个索引对应的是一个元素具体的例子如下: import numpy as np # 数据是一维数据时:索引 ...

随机推荐

  1. select&epoll

    内核空间和用户空间 现在操作系统都是采用虚拟存储器,那么对 32 位操作系统而言,它的寻址空间(虚拟地址空间,或叫线性地址空间)为 4G(2的32次方).也就是说一个进程的最大地址空间为 4G.操作系 ...

  2. 在viewPager中双指缩放图片,双击缩放图片,单指拖拽图片

    我们就把这个问题叫做图片查看器吧,它的主要功能有: (项目地址:https://github.com/TZHANHONG/ImageViewer/releases/tag/1.0,里面的MyImage ...

  3. VMWare上的ubuntu系统安装VMWare Tools(图文)

    一.启动vm,点击这里安装 二.将文件复制到桌面 三.在终端用命令,把文件解压到桌面 四.执行安装命令  sudo ./vmware-install.pl 五.效果图

  4. mssql instead of 触发器应用一-创建只读视图(view)的方法

    转自: http://www.maomao365.com/?p=4906 <span style="color:white;background-color:blue;font-wei ...

  5. 回顾:Linux环境 Mysql新建用户和数据库并授权

    回顾:Linux环境 Mysql新建用户和数据库并授权 一.新建用户 //登录Mysql @>mysql -u root -p @>密码 //创建用户 mysql> insert i ...

  6. c/c++ 标准库 pair 介绍

    标准库 pair 介绍 问题:map里的元素由key和value组成,这个key和value的组合是什么类型呢??? 答案:pair类型 pair介绍: 它是模板 有2个公有成员可供访问. first ...

  7. 利用开机账户登录“轻松访问”创建Windows后门

    利用开机账户登录“轻松访问”创建Windows后门 实验原理: 利用登录账户界面的“轻松访问”中的“放大镜”,把它替换为cmd.exe程序,实现在不登录的情况下打开命令提示符,并进行一些操作(打开的c ...

  8. AI学习---回归和聚类算法

    其他 资料链接:https://pan.baidu.com/s/1ofN2QFxpzC-OtmTFE2fHfw 提取码:o4c2

  9. php伪协议,利用文件包含漏洞

    php支持多种封装协议,这些协议常被CTF出题中与文件包含漏洞结合,这里做个小总结.实验用的是DVWA平台,low级别,phpstudy中的设置为5.4.45版本, 设置allow_url_fopen ...

  10. SSL 原理及 https 配置

    目录 1. SSL 原理 1.1. SSL 简介 1.2. 主要概念 1.3. 建立安全连接的过程 2. https 配置 (以 nginx 为例) SSL 原理 SSL 简介 SSL (Secure ...