BZOJ 5467 Slay the Spire

  • 我的概率基础也太差了.jpg

大概就是这样,因为强化牌至少翻倍,所以打出的牌必定是全部的强化牌或者$k-1$个强化牌,然后剩余的机会打出最大的几个攻击牌。

我们对于强化牌和攻击牌分别做,并且显然,排序并不会影响答案。

$f[i][j]$表示前$i$张牌,取到$j$张,第$i$张必定取的最大强化值之积,$g[i][j]$表示前$i$张攻击牌,取到$j$张,第$i$张必定取的最大伤害和。(一般来说,应该先考虑第$i$张不必需取的最大值,但是由于那样设计状态并不能优化成$n^2$,所以只能选择第$i$张必须选的答案)

$f[i][j]=a_i\times \sum\limits_{k=j-1}^{i-1} f[k][j-1]$

$g[i][j]=C(i-1,j-1)\times b_i+\sum\limits_{k=j-1}^{i-1} g[k][j-1]$

然后剩下的就是如何计算答案了。

那么很显然,我们要求的是前$n$张排中,选择$j$个,第$n$个不必需选择的答案。

因此设$F(i,j)$表示摸到$i$张,选择$j$个的最大强化之积。那么很显然,$F(i,j)=\sum\limits_{k=i}^nf[k][j]\times C(n-k,i-j)$

同时设$G(i,j)$表示摸到$i$张,选择$j$个的最大伤害之和。那么很显然,$G(i,j)=\sum\limits_{k=i}^n g[k][j]\times C(n-k,i-j)$

同样,根据我们最初得到的结论,$ans=\sum\limits_{i=0}^{k-1}F(i,i)\times G(m-i,k-i)+\sum\limits_{i=k}^m F(i,k-1)\times G(m-i,1)$

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <iostream>
#include <bitset>
using namespace std;
#define N 3005
#define ll long long
#define mod 998244353
int f[N][N],g[N][N],n,k,a[N],b[N],m,sum[N],C[N][N];
void init()
{
for(int i=0;i<=3000;i++)
{
C[i][0]=1;
for(int j=1;j<=i;j++)C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
}
}
int F(int x,int y)
{
if(x<y)return 0;if(!y)return C[n][x];int ret=0;
for(int i=x-y+1;i<=n-y+1;i++)ret=(ret+(ll)f[y][i]*C[i-1][x-y])%mod;
return ret;
}
int G(int x,int y)
{
if(x<y)return 0;int ret=0;
for(int i=x-y+1;i<=n-y+1;i++)ret=(ret+(ll)g[y][i]*C[i-1][x-y])%mod;
return ret;
}
void solve()
{
scanf("%d%d%d",&n,&m,&k);
// memset(f,0,sizeof(f));memset(g,0,sizeof(g));
for(int i=1;i<=n;i++)
for(int j=1;j<=n-i+1;j++)
f[i][j]=g[i][j]=0;
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=n;i++)scanf("%d",&b[i]);
sort(a+1,a+n+1);sort(b+1,b+n+1);
for(int i=1;i<=n;i++)f[1][i]=a[i],sum[i]=(sum[i-1]+a[i])%mod;
for(int i=2;i<=n;i++)
{
for(int j=1;j<=n-i+1;j++)f[i][j]=(ll)a[j]*(sum[n]-sum[j]+mod)%mod;
for(int j=1;j<=n-i+1;j++)sum[j]=(sum[j-1]+f[i][j])%mod;
for(int j=n-i+2;j<=n;j++)sum[j]=sum[j-1];
}
for(int i=1;i<=n;i++)g[1][i]=b[i],sum[i]=(sum[i-1]+b[i])%mod;
for(int i=2;i<=n;i++)
{
for(int j=1;j<=n-i+1;j++)g[i][j]=((ll)b[j]*C[n-j][i-1]+sum[n]-sum[j]+mod)%mod;
for(int j=1;j<=n-i+1;j++)sum[j]=(sum[j-1]+g[i][j])%mod;
for(int j=n-i+2;j<=n;j++)sum[j]=sum[j-1];
}
int ans=0;
for(int i=0;i<m;i++)
{
if(i<k)ans=(ans+(ll)F(i,i)*G(m-i,k-i))%mod;
else ans=(ans+(ll)F(i,k-1)*G(m-i,1))%mod;
}
printf("%d\n",ans);
}
int main(){init();int T;scanf("%d",&T);while(T--)solve();return 0;}

BZOJ 5467 Slay the Spire的更多相关文章

  1. LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)

    Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...

  2. loj #2538. 「PKUWC2018」Slay the Spire

    $ \color{#0066ff}{ 题目描述 }$ 九条可怜在玩一个很好玩的策略游戏:Slay the Spire,一开始九条可怜的卡组里有 \(2n\) 张牌,每张牌上都写着一个数字\(w_i\) ...

  3. BZOJ.5467.[PKUWC2018]Slay the Spire(DP)

    LOJ BZOJ 洛谷 哪张能力牌能乘攻击啊,太nb了叭 显然如果有能力牌,那么应该选最大的尽可能的打出\(k-1\)张. 然后下面说的期望都是乘总方案数后的,即所有情况的和.然后\(w_i\)统一用 ...

  4. [PKUWC2018] Slay the spire

    Description 现在有 \(n\) 张强化牌和 \(n\) 张攻击牌: 攻击牌:打出后对对方造成等于牌上的数字的伤害. 强化牌:打出后,假设该强化牌上的数字为 \(x\),则其他剩下的攻击牌的 ...

  5. 题解-PKUWC2018 Slay the Spire

    Problem loj2538 Solution 在考场上当然要学会写暴力,考虑如果手上已经有了\(a\)张攻击牌和\(b\)张强化牌: 首先强化牌会在攻击牌之前用(废话),其次要将两种牌分别从大往小 ...

  6. LOJ2538 PKUWC2018 Slay the Spire DP

    传送门 不想放题面了,咕咕咕咕咕 这个期望明明是用来吓人的,其实要算的就是所有方案的最多伤害的和. 首先可以知道的是,能出强化牌就出强化牌(当然最后要留一张攻击牌出出去),且数字尽量大 所以说在强化牌 ...

  7. LOJ2538. 「PKUWC2018」Slay the Spire【组合数学】

    LINK 思路 首先因为式子后面把方案数乘上了 所以其实只用输出所有方案的攻击力总和 然后很显然可以用强化牌就尽量用 因为每次强化至少把下面的牌翻一倍,肯定是更优的 然后就只有两种情况 强化牌数量少于 ...

  8. PKUWC Slay The Spire

    题面链接 LOJ sol 好神啊.果然\(dp\)还是做少了,纪录一下现在的思维吧\(QAQ\). 我们首先可以发现期望是骗人的,要不然他乘的是什么xjb玩意. 其实就是要求所有方案的最优方案和. 因 ...

  9. loj2538 「PKUWC2018」Slay the Spire 【dp】

    题目链接 loj2538 题解 比较明显的是,由于强化牌倍数大于\(1\),肯定是能用强化牌尽量用强化牌 如果强化牌大于等于\(k\),就留一个位给攻击牌 所以我们将两种牌分别排序,企图计算\(F(i ...

随机推荐

  1. Android平台下利用zxing实现二维码开发

    Android平台下利用zxing实现二维码开发 现在走在大街小巷都能看到二维码,而且最近由于项目需要,所以研究了下二维码开发的东西,开源的二维码扫描库主要有zxing和zbar,zbar在iPos平 ...

  2. MyBatis笔记----SSM框架mybatis3整合springmvc spring4

    上节 无springmvc框架 http://www.cnblogs.com/tk55/p/6661786.html 结构 jar包 web.xml 与index.jsp <?xml versi ...

  3. [20181225]12CR2 SQL Plan Directives.txt

    [20181225]12CR2 SQL Plan Directives.txt --//12C引入SQL PLAN Directives.12cR1版本会造成大量的动态取样,影响性能.许多人把OPTI ...

  4. Django的安装和启动

    花了将近半个月的时间终于完成了Django的初步学习,从安装到实践MVTC架构,再到写简易的model和view,踩过不少坑,因此这里分享出来,也算一个阶段性的总结. 1.安装Django pip i ...

  5. c/c++柔性数组成员

    柔性数组成员 定义和声明分离 #include <stdio.h> //只是告诉编译器,当编译到使用到这个函数的的代码时,虽然还没有找到函数定义的实体,但是也让它编译不出错误. exter ...

  6. perl语言中的.pm文件和.pl文件区别

    perl...呵呵呵 按照惯例,.pm 应该保存 Perl Module,也就是 Perl 模块.例如 Socket.pm.pl 应该保存 Perl Library,也就是 Perl 库文件.例如 p ...

  7. 编写脚本实现DHCP服务与DHCP中继自动化执行

    编写脚本实现DHCP服务与DHCP中继自动化执行 本脚本是在liunx搭建DHCP服务器以及DHCP中继服务器实验环境下实现的https://www.cnblogs.com/yuzly/p/10539 ...

  8. 通用Logging框架设计

    项目开发中,大家都会使用日志框架(LogBack, log4j , java.util.logging 等).下面来简单的了解一下日志框架的大体设计思路. 类图:

  9. appium+robotframework常见技巧总结

    1.如何输入中文 方法: 在open application参数最后,新增unicodeKeyboard=True    resetKeyboard=True:不加入这两个参数时,中文无法输入 2.如 ...

  10. Python爬虫-02:HTTPS请求与响应,以及抓包工具Fiddler的使用

    目录 1. HTTP和HTTPS 1.1. HTTP的请求和响应流程:打开一个网页的过程 1.2. URL 2. 客户端HTTP请求 3. Fiddler抓包工具的使用 3.1. 工作原理 3.2. ...