BZOJ 5467 Slay the Spire
BZOJ 5467 Slay the Spire
- 我的概率基础也太差了.jpg
大概就是这样,因为强化牌至少翻倍,所以打出的牌必定是全部的强化牌或者$k-1$个强化牌,然后剩余的机会打出最大的几个攻击牌。
我们对于强化牌和攻击牌分别做,并且显然,排序并不会影响答案。
$f[i][j]$表示前$i$张牌,取到$j$张,第$i$张必定取的最大强化值之积,$g[i][j]$表示前$i$张攻击牌,取到$j$张,第$i$张必定取的最大伤害和。(一般来说,应该先考虑第$i$张不必需取的最大值,但是由于那样设计状态并不能优化成$n^2$,所以只能选择第$i$张必须选的答案)
$f[i][j]=a_i\times \sum\limits_{k=j-1}^{i-1} f[k][j-1]$
$g[i][j]=C(i-1,j-1)\times b_i+\sum\limits_{k=j-1}^{i-1} g[k][j-1]$
然后剩下的就是如何计算答案了。
那么很显然,我们要求的是前$n$张排中,选择$j$个,第$n$个不必需选择的答案。
因此设$F(i,j)$表示摸到$i$张,选择$j$个的最大强化之积。那么很显然,$F(i,j)=\sum\limits_{k=i}^nf[k][j]\times C(n-k,i-j)$
同时设$G(i,j)$表示摸到$i$张,选择$j$个的最大伤害之和。那么很显然,$G(i,j)=\sum\limits_{k=i}^n g[k][j]\times C(n-k,i-j)$
同样,根据我们最初得到的结论,$ans=\sum\limits_{i=0}^{k-1}F(i,i)\times G(m-i,k-i)+\sum\limits_{i=k}^m F(i,k-1)\times G(m-i,1)$
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <iostream>
#include <bitset>
using namespace std;
#define N 3005
#define ll long long
#define mod 998244353
int f[N][N],g[N][N],n,k,a[N],b[N],m,sum[N],C[N][N];
void init()
{
for(int i=0;i<=3000;i++)
{
C[i][0]=1;
for(int j=1;j<=i;j++)C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
}
}
int F(int x,int y)
{
if(x<y)return 0;if(!y)return C[n][x];int ret=0;
for(int i=x-y+1;i<=n-y+1;i++)ret=(ret+(ll)f[y][i]*C[i-1][x-y])%mod;
return ret;
}
int G(int x,int y)
{
if(x<y)return 0;int ret=0;
for(int i=x-y+1;i<=n-y+1;i++)ret=(ret+(ll)g[y][i]*C[i-1][x-y])%mod;
return ret;
}
void solve()
{
scanf("%d%d%d",&n,&m,&k);
// memset(f,0,sizeof(f));memset(g,0,sizeof(g));
for(int i=1;i<=n;i++)
for(int j=1;j<=n-i+1;j++)
f[i][j]=g[i][j]=0;
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=n;i++)scanf("%d",&b[i]);
sort(a+1,a+n+1);sort(b+1,b+n+1);
for(int i=1;i<=n;i++)f[1][i]=a[i],sum[i]=(sum[i-1]+a[i])%mod;
for(int i=2;i<=n;i++)
{
for(int j=1;j<=n-i+1;j++)f[i][j]=(ll)a[j]*(sum[n]-sum[j]+mod)%mod;
for(int j=1;j<=n-i+1;j++)sum[j]=(sum[j-1]+f[i][j])%mod;
for(int j=n-i+2;j<=n;j++)sum[j]=sum[j-1];
}
for(int i=1;i<=n;i++)g[1][i]=b[i],sum[i]=(sum[i-1]+b[i])%mod;
for(int i=2;i<=n;i++)
{
for(int j=1;j<=n-i+1;j++)g[i][j]=((ll)b[j]*C[n-j][i-1]+sum[n]-sum[j]+mod)%mod;
for(int j=1;j<=n-i+1;j++)sum[j]=(sum[j-1]+g[i][j])%mod;
for(int j=n-i+2;j<=n;j++)sum[j]=sum[j-1];
}
int ans=0;
for(int i=0;i<m;i++)
{
if(i<k)ans=(ans+(ll)F(i,i)*G(m-i,k-i))%mod;
else ans=(ans+(ll)F(i,k-1)*G(m-i,1))%mod;
}
printf("%d\n",ans);
}
int main(){init();int T;scanf("%d",&T);while(T--)solve();return 0;}
BZOJ 5467 Slay the Spire的更多相关文章
- LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)
Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...
- loj #2538. 「PKUWC2018」Slay the Spire
$ \color{#0066ff}{ 题目描述 }$ 九条可怜在玩一个很好玩的策略游戏:Slay the Spire,一开始九条可怜的卡组里有 \(2n\) 张牌,每张牌上都写着一个数字\(w_i\) ...
- BZOJ.5467.[PKUWC2018]Slay the Spire(DP)
LOJ BZOJ 洛谷 哪张能力牌能乘攻击啊,太nb了叭 显然如果有能力牌,那么应该选最大的尽可能的打出\(k-1\)张. 然后下面说的期望都是乘总方案数后的,即所有情况的和.然后\(w_i\)统一用 ...
- [PKUWC2018] Slay the spire
Description 现在有 \(n\) 张强化牌和 \(n\) 张攻击牌: 攻击牌:打出后对对方造成等于牌上的数字的伤害. 强化牌:打出后,假设该强化牌上的数字为 \(x\),则其他剩下的攻击牌的 ...
- 题解-PKUWC2018 Slay the Spire
Problem loj2538 Solution 在考场上当然要学会写暴力,考虑如果手上已经有了\(a\)张攻击牌和\(b\)张强化牌: 首先强化牌会在攻击牌之前用(废话),其次要将两种牌分别从大往小 ...
- LOJ2538 PKUWC2018 Slay the Spire DP
传送门 不想放题面了,咕咕咕咕咕 这个期望明明是用来吓人的,其实要算的就是所有方案的最多伤害的和. 首先可以知道的是,能出强化牌就出强化牌(当然最后要留一张攻击牌出出去),且数字尽量大 所以说在强化牌 ...
- LOJ2538. 「PKUWC2018」Slay the Spire【组合数学】
LINK 思路 首先因为式子后面把方案数乘上了 所以其实只用输出所有方案的攻击力总和 然后很显然可以用强化牌就尽量用 因为每次强化至少把下面的牌翻一倍,肯定是更优的 然后就只有两种情况 强化牌数量少于 ...
- PKUWC Slay The Spire
题面链接 LOJ sol 好神啊.果然\(dp\)还是做少了,纪录一下现在的思维吧\(QAQ\). 我们首先可以发现期望是骗人的,要不然他乘的是什么xjb玩意. 其实就是要求所有方案的最优方案和. 因 ...
- loj2538 「PKUWC2018」Slay the Spire 【dp】
题目链接 loj2538 题解 比较明显的是,由于强化牌倍数大于\(1\),肯定是能用强化牌尽量用强化牌 如果强化牌大于等于\(k\),就留一个位给攻击牌 所以我们将两种牌分别排序,企图计算\(F(i ...
随机推荐
- Python 关于xpath查找XML元素的一点总结
关于xpath查找XML元素的一点总结 by:授客 QQ:1033553122 欢迎加入全国软件测试qq群:7156436 测试环境 Win7 64 python 3.4.0 实践出真知 代码 ...
- "BLAME" is out.
The latest feature animation film "BLAME" is watchable on the Netflix. Rendering was done ...
- jquery带参插件函数的编写
<!DOCTYPE html><html><head lang="en"> <meta charset="UTF-8" ...
- 短连接、长连接与keep-alive
短连接与长连接 通俗来讲,浏览器和服务器每进行一次通信,就建立一次连接,任务结束就中断连接,即短连接.相反地,假如通信结束(如完成了某个HTML文件的信息获取)后保持连接则为长连接.在HTTP/1.0 ...
- mumu模拟器安装xposed--如何在android模拟器上进行root
问题描述 安装xposed表示failed to access root权限,新版的mumu模拟器没有了root选项,需要自己root. 1.先关掉应用兼容性,然后重启 电脑一般都是x86的,mumu ...
- (后端)根据查询语句修改的update语句
UPDATE A SET a.name = m.name FROM item A INNER JOIN table M ON A.id=M.id WHERE a.xx <> M.xx
- 如何在Ruby中编写微服务?
[编者按]本文作者为 Pierpaolo Frasa,文章通过详细的案例,介绍了在Ruby中编写微服务时所需注意的方方面面.系国内 ITOM 管理平台 OneAPM 编译呈现. 最近,大家都认为应当采 ...
- Windows Server 2016-管理Active Directory复制任务
Repadmin.exe可帮助管理员诊断运行Microsoft Windows操作系统的域控制器之间的Active Directory复制问题. Repadmin.exe内置于Windows Serv ...
- java基础学习总结——equals方法
一.equals方法介绍 1.1.通过下面的例子掌握equals的用法 package cn.galc.test; public class TestEquals { public static vo ...
- Leancloud+Valine打造Hexo个人博客极简评论系统
以下配置是基于Next主题6.1.0版本 效果见个人博客的最下方评论. Leancloud配置 首先访问Leancloud官网https://leancloud.cn/ 有Github账号的小伙伴可以 ...