LOJ #2541「PKUWC2018」猎人杀
这样$ PKUWC$就只差一道斗地主了
假装补题补完了吧.....
这题还是挺巧妙的啊......
题意
每个人有一个嘲讽值$a_i$,每次杀死一个人,杀死某人的概率为$ \frac{a_i}{a_{alive}}$,求第一个人最后死的概率
数据范围:$ 1 \leq a_i \leq 10^5,\sum\limits_{i=1}^n a_i \leq 10^5$
$Solution$
以下部分用$ val$表示所有人的嘲讽值之和
先讲讲$ n*val$的$ DP$
用$ P_S$表示集合$ S$中的人都在$ 1$后面死的概率
由于期间打死其他人不会影响$ P_S$的结果
每个$ P_S$是独立的
等价与下一枪打在$ S$或$1$上打死$1$的概率即$ \frac{a_i}{a_S+a_i}$
其中$ a_S$表示集合$ S$的嘲讽值之和
则容斥计算答案为$ \sum\limits(-1)^{|S|+1}P_S$
容易发现枚举集合的复杂度过大无法承受
发现$ val$不大
尝试用$ f_{i,j}$表示前$ i$个人(从2开始枚举)嘲讽值之和为$ j$的方案数
发现有容斥系数不能直接记录方案
不过没有关系,由于容斥系数只和奇偶性有关,我们只需要把$ f_{i,j}$改成嘲讽值之和为$j$的系数和即可
转移的时候分选$ i$和不选$i$两种
如果选了前面的奇偶性会全部改变
因此得出转移方程式$ f_{i,j}=f_{i-1,j}-f_{i-1,j-a[i]}$
可以过$ 50$分
考虑生成函数
发现转移的本质是若干个形如$ (1-x^{a_i})$的二项式相乘
即最终转移结果为 $\prod\limits_{i=2}^n 1-x^{a_i}$
用$ NTT$分治计算这个过程
由于类似线段树结构的分治只有$ log_n$层,每层的复杂度是$ O(val \ log_{val})$
因此总复杂度是$ O(val \ log_n \ log_{val})$的,可以通过本题
以及还有$一个log$的小$ trick$
暂时还不会....以后再写吧
$update$
尝试去写了一下,好像比$ log^2$的分治慢啊....代码太丑就不贴了...Exp常数真大...
$ my \ code:$
#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#define p 998244353
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x = ; char zf = ; char ch = getchar();
while (ch != '-' && !isdigit(ch)) ch = getchar();
if (ch == '-') zf = -, ch = getchar();
while (isdigit(ch)) x = x * + ch - '', ch = getchar(); return x * zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int i,j,k,m,n,x,y,z,cnt;
int a[];
int ksm(int x,int y){
int ans=;
for(rt i=y;i;i>>=,x=1ll*x*x%p)if(i&)ans=1ll*ans*x%p;
return ans;
}
namespace poly{
vector<int>R;
void getR(int n){
R.resize(n);
for(rt i=;i<n;i++)R[i]=(R[i>>]>>)|(i&)*(n>>);
}
void NTT(int n,vector<int>&A,int fla){
for(rt i=;i<n;i++)if(i>R[i])swap(A[i],A[R[i]]);
for(rt i=;i<n;i<<=){
int w=ksm(,(p-)//i);
for(rt j=;j<n;j+=i<<){
int K=;
for(rt k=;k<i;k++,K=1ll*K*w%p){
int x=A[j+k],y=1ll*K*A[i+j+k]%p;
A[j+k]=(x+y)%p,A[i+j+k]=(x-y)%p;
}
}
}
if(fla==-){
reverse(A.begin()+,A.end());int invn=ksm(n,p-);
for(rt i=;i<n;i++)A[i]=1ll*A[i]*invn%p;
}
}
}
using namespace poly;
int calc(int L,int R,vector<int>&A){
if(L==R){
A.resize(a[L]+);
A[]=;A[a[L]]=-;
return a[L];
}
const int mid=L+R>>;
vector<int>f,g;
int len=calc(L,mid,f)+calc(mid+,R,g);
int lim=;while(lim<=len)lim<<=;
getR(lim);f.resize(lim);g.resize(lim);A.resize(lim);
NTT(lim,f,);NTT(lim,g,);
for(rt i=;i<lim;i++)A[i]=1ll*f[i]*g[i]%p;
NTT(lim,A,-);
return len;
}
int main(){
n=read();
for(rt i=;i<=n;i++)a[i]=read();
vector<int>xs;
int sum=calc(,n,xs);int ans=;
for(rt i=;i<=sum;i++)(ans+=1ll*xs[i]*ksm(i+a[],p-)%p*a[]%p)%=p;
cout<<(ans+p)%p;
return ;
}
LOJ #2541「PKUWC2018」猎人杀的更多相关文章
- LOJ 2541 「PKUWC2018」猎人杀——思路+概率+容斥+分治
题目:https://loj.ac/problem/2541 看了题解才会……有三点很巧妙. 1.分母如果变动,就很不好.所以考虑把操作改成 “已经选过的人仍然按 \( w_i \) 的概率被选,但是 ...
- loj#2541. 「PKUWC2018」猎人杀
传送门 思路太清奇了-- 考虑容斥,即枚举至少有哪几个是在\(1\)号之后被杀的.设\(A=\sum_{i=1}^nw_i\),\(S\)为那几个在\(1\)号之后被杀的人的\(w\)之和.关于杀了人 ...
- 【LOJ】#2541. 「PKUWC2018」猎人杀
题解 一道神仙的题>< 我们毙掉一个人后总的w的和会减少,怎么看怎么像指数算法 然而,我们可以容斥-- 设\(\sum_{i = 1}^{n} w_{i} = Sum\) 我们把问题转化一 ...
- 「PKUWC2018」猎人杀
「PKUWC2018」猎人杀 解题思路 首先有一个很妙的结论是问题可以转化为已经死掉的猎人继续算在概率里面,每一轮一直开枪直到射死一个之前没死的猎人为止. 证明,设所有猎人的概率之和为 \(W\) , ...
- [LOJ2541]「PKUWC2018」猎人杀
loj description 有\(n\)个猎人,每个猎人有一个仇恨度\(w_i\),每个猎人死后会开一枪打死一个还活着的猎人,打中每个猎人的概率与他的仇恨度成正比. 现在你开了第一枪,打死每个猎人 ...
- loj2541 「PKUWC2018」猎人杀 【容斥 + 分治NTT】
题目链接 loj2541 题解 思路很妙啊, 人傻想不到啊 觉得十分难求,考虑容斥 由于\(1\)号可能不是最后一个被杀的,我们容斥一下\(1\)号之后至少有几个没被杀 我们令\(A = \sum\l ...
- LOJ2541. 「PKUWC2018」猎人杀 [概率,分治NTT]
传送门 思路 好一个神仙题qwq 首先,发现由于一个人死之后分母会变,非常麻烦,考虑用某种方法定住分母. 我们稍微改一改游戏规则:一个人被打死时只打个标记,并不移走,也就是说可以被打多次但只算一次.容 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- loj#2537. 「PKUWC2018」Minimax
题目链接 loj#2537. 「PKUWC2018」Minimax 题解 设\(f_{u,i}\)表示选取i的概率,l为u的左子节点,r为u的子节点 $f_{u,i} = f_{l,i}(p \sum ...
随机推荐
- 洛谷 P1879 玉米田(状压DP入门题)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 相关变量解释: int M,N; int plant[maxn][maxn];/ ...
- vertical-align垂直对齐用法
一.垂直对齐方式{vertical-align:middle/top/bottom:} <img>垂直对齐方式:1)给自身加vertical-align:再设置line-height即可: ...
- 点赞功能与redis的相遇
https://www.jianshu.com/p/2ab76d5bde71 或者 https://kikoroc.com/2016/06/07/dev-like-function-with-redi ...
- Windows下MySQL下载安装、配置与使用
用过MySQL之后,不论容量的话,发现比其他两个(sql server .oracle)好用的多,一下子就喜欢上了.下面给那些还不知道怎么弄的童鞋们写下具体的方法步骤. (我这个写得有点太详细了,甚至 ...
- linux简单优化
1.简单优化 #关闭firewalld,selinux,NetworkManager systemctl(管理服务的命令) stop(关服务) firewalld (服务名称,d是demo的意思) s ...
- bzoj2049 线段树 + 可撤销并查集
https://www.lydsy.com/JudgeOnline/problem.php?id=2049 线段树真神奇 题意:给出一波操作,拆边加边以及询问两点是否联通. 听说常规方法是在线LCT, ...
- Scoring and Modeling—— Underwriting and Loan Approval Process
https://www.fdic.gov/regulations/examinations/credit_card/ch8.html Types of Scoring FICO Scores V ...
- JDBC-DbUtils
依赖 pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns=" ...
- linux 精简开机自启动
centos7 精简开机自启动 ntsysv rsyslog crond sshd network
- webservice 项目中遇到的问题
redshift database 连接异常 解决方案 url 修改添加参数如下 jdbc:redshift://hostname:5439/dbname?ssl=true&sslfactor ...