mysql列反转Pivoting
Pivoting是一项可以把行旋转为列的技术。在执行Pivoting的过程中可能会使用到聚合。Pivoting技术应用非常广泛。下面讨论的都是静态的Pivoting查询,即用户需要提前知道旋转的属性和列的值。对于动态Pivoting,需要动态地构造字符串。
开放架构
CREATE TABLE t(
id INT,
attribute VARCHAR(10),
value VARCHAR(20),
PRIMARY KEY(id,attribute)
);
INSERT INTO t SELECT 1,'attr1','BMW';
INSERT INTO t SELECT 1,'attr2','100';
INSERT INTO t SELECT 1,'attr3','2010-01-01';
INSERT INTO t SELECT 2,'attr2','200';
INSERT INTO t SELECT 2,'attr3','2010-03-04';
INSERT INTO t SELECT 2,'attr4','M';
INSERT INTO t SELECT 2,'attr5','55.60';
INSERT INTO t SELECT 3,'attr1','SUV';
INSERT INTO t SELECT 3,'attr2','10';
INSERT INTO t SELECT 3,'attr3','2011-11-11';
SELECT id,
MAX(CASE WHEN attribute='attr1' THEN value END) AS attr1,
MAX(CASE WHEN attribute='attr2' THEN value END) AS attr2,
MAX(CASE WHEN attribute='attr3' THEN value END) AS attr3,
MAX(CASE WHEN attribute='attr4' THEN value END) AS attr4,
MAX(CASE WHEN attribute='attr5' THEN value END) AS attr5
FROM t
GROUP BY id;
Pivoting先根据id进行分组,确定行列互转后记录的行数。之后通过已知的5个属性来确定行列互转后有5列数据,并通过CASE得到每列的值。由于使用了分组技术,因此一定要使用分组函数来取得列的值,故这里使用MAX函数,当然也可以使用MIN函数。最后得到的结果如下图
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAYoAAABUCAIAAAATX+esAAAL4klEQVR4nO2du24bORfH+Tx5AGN2HiGvoOqTjAH8CO7cpIjkBaYx3LpfKLF2gSlSunazcqxmgN3NXrzfBxdxEt9iy+BXzI2cC0VZnMND+vxABFqKmjl/zvBvci5n2U/TX6hQoUIFYWE/TX/hBEEQ+LBvT1+/frUbgCmQC0EeHjzedIjHQsiejIFcCPLw4PGmQzwWYt+evnz5YjcAUyAXgjw8eLzpEI+FkD0ZA7kQ5OHB402HeCyE7MkYyIUgDw8ebzrEYyGA9pTGYRinjeqrqyugAHoGuRDk4cHjTYd4LKQ3e2qaUYc9ff78ee0NdmyqIIlU3/aFSSFpHLIcU1KM9nMSFeGxKDESHjw9nHg8icwdMG36OrLgSppCcnt6fFze3T/0W85/DIIfP8qVy+XTv//9n9bexZ+3bSorH/d/YIyxjm/7K4aFzLZHs+zzzyP2w+QcbXiLSWAgPPhi/MS7u384HrFgtK1o4IKQn0ds+9jeEbm9+y6W3J4eHpe1LzYtH/eDYP8s+1DacVYjlOXy6Z+Lf5t7P5uUPwrGH7/f3i3GRUUwmVWfR9tBsD8eMca2j5u7Biy9CLnL2mc/xBnebFivcaMY75CzSRBMFvDnnmkh1g5oJqRW2bc9zYaMDY/FGq3OrcrxNhvN6j+XvS/ffn3XFjrXsBBzWnoILzvdnfQm4x2Se5O542XvyM6GpatlimCF1CoLe3p4vLm9N1nO9oNgf579K9bIzZZPT3/9fdGy9zNpzjWv/bz83LbN9sqeSy9CbmdDFozP0IZnMkLgYrRDzsfVb4QfuifE5pHNhNQqkdpTUHZNaz+6Y08bCDF5fvTSz7f3N7f374dseAza1ag7BPzc6+3Ino8DNPb0/eHx+ubOZJlPtoLJ/OZ4yIK387vrm7v5OGDBZC43Wy6fPv35d3PvW0XL6lfzyRYbvSs3nn3O99K6a6NyVhXDQuaTraLfEIY3H4+K2Krj61bp5cRT1Lsi5P1o+F5uACukVpnb0/33h2/XtybLfLy1Nf71+vbbu3wxuzUc5jVCWS6f/vj0V3PvxY+kX2WVW2/Pqs+Nbf76tprS/uedUUXKYlaIqKJsiSe88pgCdzLa41WV8rR3VMh8vGXpyGZCapW92dNmnetcQS4EeXjUISREaU/3D1+/3cCX5XL5+x9/2tr7yxGCPDzqEBKSCalV5vZ0d//9y9dr+PK4XP72+ydbe385QpCHRx1CQjIhtcrcns4JgiCQUb7UYo2HhweLezcIciHIw4PHmw7xWIj9hCoev2+NCuThwXN1dcUZ96B4JUSG7MkYyIUgDw8er0a17RiMCZEhezIGciHIw4PHq1FtOwZjQmTInoyBXAjy8ODxalTbjsGYEBmyJ2MgF4I8PHhWjeqL2dFg8ObUzNh7fTD4sDt7ZcWenBIiA2pPUcjXSuYb7jFWlGjB+WUc7jE2rdIzJlPGDuP0Mg4Pi8R+l3G4F8aX+ffRHlwyR43xn0RlnDyJcmllhM0aqPCyjt1jbI+FJ6kyGLUEueXqLWzSflPUo/piZ3fw5pS/mu1+GOzuXOT1r2a7R7OL7N+ysaKyNrBrNSD25JgQGSB7SmPOGGfr2pNoOrkNRdFh4T6XcXgYhodxKthQehKGh2G0EH5lWksXantKT0K2x1gRTzJlWZDpSZgZbrMGLrxFlPcYT6K9ML5sD2alBBGdLWzSfnOUo/r0IJsjvJrtHh0cHBXzhU1GNbuYHQ0OXgPbk2tCZCD/Vwg8fLY9LSI2TTK7SU7C7C98MmXRSW5AyTT3rGQaJYsonwKUH0BYPXuq7FKY1uWVzRrw8DjnPI0Pw/iyOxiVBBGdLWzS3gCqUV1OELLB+fogXxxtNKr5xc5uNX+BsSfnhMjgtqdqcRfGl/JIruZTcZpNmk5SztN4GqfFcqD8gwzDM+0p/9ysAQ+Pt3llLRiVBBGdLWzS3gCKUV0Nv2Jwnr4ZHLzedFTz0h2g7Mk9ITK47allcZf7TnU1KmtzGYfZ9GqacJ7Gh1GS/wuH+/aUr+z0zKKlTb4W22PhSaxjN+u2N8tao1oaus8e1a2VsPaEXYiMI/Ykzph4dik3SnhjtBTXUNKTKL7s65JqF44v7kpvag2v4GUs7lpGNeMXO7sHO1gnHd4IkXHEnhZR/Q5dhlCTTMOwvGq+iMLDEPLCE1/PnpBdGpdud7aHpyNBRGcLm7TfnDUu2eT1pwcfBoOj2UV5vbkY7fmtMfzXnvALkYG9c8c4Y7y2btG79lSbKxXUVgrS4wWgF5645p278iEJTA8WiLEVzxa0BKMhQURnC5u03xTtG17C4BRH+4fBICvNmg8Hp7X/ZBzBnTsXhMjQY5nGQC4EeXjwaD0uZHD42X3uyRUhMmRPxkAuBHl48Hj1sLU3QmTInoyBXAjy8ODx6lU12zEYEyJD9mQM5EKQhwePV6PadgzGhMjk9nRFEARhm3Z7ssiVv96PCuThweNNh3gshOyJ7OmF4k2HeCyE7Ins6YXiTYd4LITsiezpheJNh3gsBL89OfzUBiqQhwePNx3isRAQe0p5WLzREsZtMXWPeadz/VVopaP0PltmWcPaXirs3FqeE1VTpzaKDmlPymo6AFMo7Uno8yodRa1GZhHpnQnmsWRPSfWeXcR47Tgr7cntXH8VGuko/c+WWe0lS3q3qn1RH04j4BQOHUlZkbLKnhSpuBosopoN9X1aithf3MXhOvbkeK6/NrrSUVpPqKIOr2DzhCq1b5Xt8yyD4B3SlZQVJwbtqcw629K4/9TYtu2pLaeKwp5cz/XXQmc6Sgzp6ACyZabxYesyoT25Xb6+sGFPrUlZcaK5uGss1lgj45C47iuTUvR7WopYtqfmyo57lrRwBYp0lBjsCSRbprAjZfvMyIRi2iBW2VNbUlaU6M2LxXSDihphrgRyWorYtKdWb+KeJS1UoU5HaX1xB5UtM/u6ngZe2d7O7Kk1KStG1lm2q2tq81zlMr8HbN6561K2xrWnvN6ZXH8VGukovc+WmZ5Egv3pXhqv7dQgq+2p5wBMoXXTo7TaZk35IbsRUS6o96LkJVwaF1NlNp8t0L5z516uv6oHtNJR+p4ts7hj3ZH6sntrZE9KNB8ZEVypWVO7OCg+c+D9gwVKtJ57MugjVp57QgDy8ODxpkM8FoLdnuipcVMgDw8ebzrEYyH47cmZgvwsQR4ePN50iMdCyJ7Inl4o3nSIx0IoWyZBEFhotyeLNGNyFORCkIcHz5VP03bbMRgTIkP2ZAzkQpCHB49Xo9p2DMaEyJA9GQO5EOThwePVqLYdgzEhMmRPxkAuBHl48Hg1qm3HYEyIDNmTMZALQR4ePKtGtVMP3HkjRAbInqLypZao7SzpopbFsfX1VKmyJc8ZGBrjXz/VpHnW6GdVeKKErhrI9s9HPaodS9PqjRAZ6GyZ7enoOpDeoZ8mHW/PC5Zk9d0otT2tlWoSOrxnZctsrRHpu/2GKEe1a2lavREiA724ixivjUWlPcl/ujuSe1R5yxZRI8MWHKtnT7rZSHpBb3Gnny2zu0b9rdn2G6Aa1c6lafVGiAycPcUhZw1v4sphk+UDqyYXXUNlEdVykljhmfbUf5avDC17WiNbZneN+lsX7Mm9NK3eCJGxMHvSX9zlZIk4Ohd3XMivCHQdpxX37WmtbJktNUL2y7SP9mZZa1RjT9PqjRAZaHtKIl4bi3qLDiHxc1knpUYL40UcglzE6cLxxd262TK7a9Tfujl74sjTtHojRAYoHV15fq01ewrryzopy6J0UXkRdSQ5g2Mde0J2afxZ2TI7a9TfumBP7qVp9UaIDNCduzJVZnMZoxg2QjJ84d5ce258oCWSAq07d7qpJkHDe262zJaars320X5DtG94uZCm1RshMvRYpjGQC0EeHjxajwsZHH52n3tyRYgM2ZMxkAtBHh48Xj1s7Y0QGbInYyAXgjw8eLx6Vc12DMaEyJA9GQO5EOThwePVqLYdgzEhMpQtkyAILLTbE0EQBDbIngiCQArZE0EQSCF7IggCKWRPBEEgheyJIAikkD0RBIEUsieCIJBC9kQQBFL+D42mrzc2iozFAAAAAElFTkSuQmCC" alt="" />
关系除法
CREATE TABLE t1 (
orderid VARCHAR(10) NOT NULL,
productid INT NOT NULL,
PRIMARY KEY(orderid,productid)
);
INSERT INTO t1 SELECT 'A',1;
INSERT INTO t1 SELECT 'A',2;
INSERT INTO t1 SELECT 'A',3;
INSERT INTO t1 SELECT 'A',4;
INSERT INTO t1 SELECT 'B',2;
INSERT INTO t1 SELECT 'B',3;
INSERT INTO t1 SELECT 'B',4;
INSERT INTO t1 SELECT 'C',3;
INSERT INTO t1 SELECT 'C',4;
INSERT INTO t1 SELECT 'D',
SELECT orderid
FROM (
SELECT
orderid,
MAX(CASE WHEN productid=2 THEN 1 END) AS p2,
MAX(CASE WHEN productid=3 THEN 1 END) AS P3,
MAX(CASE WHEN productid=4 THEN 1 END) AS p4
FROM t1
GROUP BY orderid
) AS P
WHERE p2=1 AND p3=1 AND p4=1;
上述语句返回“A”和“B”。如果单独运行子查询,将会得到每个订单对应的产品ID,得到的结果如下
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAQ8AAABhCAIAAABHxLP3AAAIiElEQVR4nO2d22/bVBzHz5/Td6TI5AEBYqgIJAQTD0jbw5IqoCEeeOBtmjoQEksyUSRQmVSkCWkCNHpjSsU0NnYRlz1sWZM2bMsuWbe2W1uYe0napimHB9upk9jOzT7H/uX70U+V45z4d7727xs78TkNOzN6FoFAtBLszOhZDgBogd51y9ramuwuuAa0iMkOt1AAWsRk7123rK6uyu6Ca0CLmOxwCwWgRUx2uIUC0CIme5tu+W93+a8vFs8fXs2d6bZf+aFweCgv5lVWqKrqxmZ8AbSIyd6eW/65cWrl2oc769eeXDyk3r3UVb9aqfvGNu655dmzZ25sRgj5oTDTsVTvUy2mbjMWm9LXTsUa15kQo2UqZr0rnbPrbtnZqWxulZ1jefr7pUsHdtTv1JmjK38euX/6ncIfY01fZRuzJxTlxIyYVzVEpbK7+ORpK6p9EZMD0Ult+ecoez4xGxAt5oM1OcC05T0tuYQiR8tElCnRgcZC0rKXNrftQndLeafi0EiLx+c/3v73h62FI1tPTqrTR0pzR+98+5pFy5mkor91DExoD5VkPGp6WH1rUZLZmjVKfKa2/UxSqW9jvKq7qFR25xcWW1EtOmaSijIQMdRGJuoa5OKKEp8JkJbqwZqMaAWwF41rXNVisyezCUVJ5Gr7VpPdYZttuOXJ70Mb9z4vFd7fnPuo9OBg6c7+9KcvNjaLGD3LJhQWndQK3ejrZPVZo7umXaatMbffa1O3pttd6esKY4YfJgZYXT3ZH2OfajF6m00opre5XFxh9dJc12K1J3WrOO5Jh20abinvFEtbdvFs7vr8ucOLvw2s3T5Qyr+xee/d4q39Nz55Lnfhp8bGipLMaMvZpMKi49lkzZq65azppMEYs2xvt4UuorK7++jxgrNqOVEjcDLClHi2+mzdwyBoMV0RNBw1CzluarHYk7Px2mpjSrIxu8M2m7tlJTs+N3awNPdN8e5bpduv3PjqhUxy3+yJV/NXJy3bt+2Wuv0It1i7xdoqwdFiEeMRFpnwTIvT+45131p1y3Z5Z6O4aRmPf3lva+HUWiZUyu1LD79089zp1ZXltX+W7dpHGIuMb24UNzNxhUUmNjKJkJLI6M9ORJhyPGM8qyQyxYlqez3M7fXlxldZp249KpXdh3OPHVRLC7P88aguNpMIGXsgqFqMyMSjhpC9w+qJFss96dg3LbvDNnW3bG2X1zdKlrHw6wfbTz8r3n79+tcvZy/8aNdsLzLxkPHJakx7GIpPV58di2jPhSIRff1ee8ZC8Wlz++py46u6i0plt/DwkYNqaWHeG9oO3ChNH6+5gAgdzwZGS+PBMg4lY+zQmJfHxWpPOvdNy+6wzeZuuXvxy79Pv33z5Ju3ro7LPwAuRcAqLKBa5B6XTvekQwPDLVvltfVi70SlUnlQmPOj6ul4KBRP09Ai97h0uicdGuhu2dzaXl3b6J3YqVTuP3hIQzW0uJvdoYHullkAQDOqI196jnK5LLsLrgEtYrL37oh9jNv1J3TGIFMCFeZP4BY/ggrzJ3CLH0GF+RO4xY+gwvxJ8N2Si7FBxgZZLOdat6QT0AqLhXnjjD9oEZO9JbdMjTLNLWzYnVm+fiBwFZYf4oxxRsItcrV0nL0FtywPhQcZG47FhhkbDA8td9VR/xC4CuOc8zwPk3AL57K1dJS9uVvyV8JskIWv5KsL3XXTL6DCJEPRLfmh6ilFP8kQuRhDhUmGoFuMz/fmoPFZHxUmGXpu0T7fV6++tIsxNmrxb6ACBypMMvTcEhus/WSvXYwNWv3XtKARuArTv8lhnDFedwCgRUx23J2kALSIyQ63UABaxGSHWygALWKywy0UgBYx2XW3qAAAVVVxbrHEeb8EC2gRkx1uoQC0iMkOt1AAWsRkh1soAC1issMtFIAWMdnbHFVJZQAyl31UOgZzJyVmb80to1PcGGFJYwAyD2CFYe6k9Oytu8U00YUEgaswzmWP23UXemOQ66/ESIzV10CFSYasWzSTmJeDDypMMsTdgpnG0oFbpGZvwy34LxbygVukZsc3yIEBcyelZ8fdSQpAi5jscAsFoEVMdriFAtAiJjvcQgFoEZMdcycBqKG5W3oQVVU54zTC+RgHC7la4BZr4BZ/Arf4EbjFn8AtfgRu8Sdwix8R4pZyfqSQOlZ0Z2v9S6nUfL4PbpGWvRW3TMUoDtoX4Jb12HzqWJH3qZdThcuxsr6+T708oq5rf6uNHVbWGaZuTZDdQm7upG4VOpPAqnjvlmJaOxX0qZdHltIjxmmhG7ewcn6kkO4PvFtozp0kNu7YjOduqZ4HtKLvX9IvybpyC1+Pze+dpgLrFs4pjkEmNhffjNdu2Stro+gXjxXS/d26hVddB7cIzw63iHNLjSU6dovVSrhFTHZciQl0C+Prsfl0DOcWzjlFt+BTfudR97lFX19MpwqpEXW9+h2A4SL92zN8bgmyWzi+Qe40zN+JmYre7KJUIaVF45rU0mLdQ8apfSeGuZNBQdz9Fi/OVwF3iwNBvztJE9zL9ydwix/BODF/Arf4EbjFnwTALd3NNgOADs3d0oOoxM4tsvvgpha5VWEP3EIhqGmRWxX2wC0UgpoWuVVhD9xCIahpkVsV9sAtnobA+y2UtMitCnt6+7+Ge1xhQudOUtIiBG9/d1L//ZbBGI2BYt5XmNi5k5S0eIyA353knNYAfs8rTPDcSUpaBOD5b4M1PgwyXleY6LmTlLQIAG5pC/EV5u3cSUpaBCDALbgS66rCPJ07SUmLAPArrW0h+lpfX+/Z3ElKWgSA351sC7HfI3k/d5KSFo/B3Mm2EXePwsVtSr/fIkaL3KqwB27xNHAvvyMtcqvCHriFQlDTIrcq7IFbKAQ1LXKrwh7MnQSghuZuAQA0BW4BoFXgFgBaBW4BoFX+B5ohsC8IpFR5AAAAAElFTkSuQmCC" alt="" />
SELECT orderid
FROM (
SELECT
orderid,
COUNT(CASE WHEN productid=2 THEN 1 END) AS p2,
COUNT(CASE WHEN productid=3 THEN 1 END) AS P3,
COUNT(CASE WHEN productid=4 THEN 1 END) AS p4
FROM t1
GROUP BY orderid
) AS P
WHERE p2=1 AND p3=1 AND p4=1;
格式化聚合函数
CREATE TABLE t2 (
orderid INT NOT NULL,
orderdate DATE NOT NULL,
empid INT NOT NULL,
custid VARCHAR(10) NOT NULL,
qty INT NOT NULL,
PRIMARY KEY (orderid,orderdate)
);
INSERT INTO t2 SELECT 1,'2010-01-02','3','A',10;
INSERT INTO t2 SELECT 2,'2010-04-02','2','B',20;
INSERT INTO t2 SELECT 3,'2010-05-02','1','A',30;
INSERT INTO t2 SELECT 4,'2010-07-02','3','D',40;
INSERT INTO t2 SELECT 5,'2011-01-02','4','A',20;
INSERT INTO t2 SELECT 6,'2011-01-02','3','B',30;
INSERT INTO t2 SELECT 7,'2011-01-02','1','C',40;
INSERT INTO t2 SELECT 8,'2009-01-02','2','A',10;
INSERT INTO t2 SELECT 9,'2009-01-02','3','B',20;
SELECT custid,YEAR(orderdate) AS year,SUM(qty) AS sum_qty
FROM t2 GROUP BY custid,YEAR(orderdate)
SELECT custid,
IFNULL(SUM(CASE WHEN orderyear=2009 THEN qty END),0) AS '2009',
IFNULL(SUM(CASE WHEN orderyear=2010 THEN qty END),0) AS '2010',
IFNULL(SUM(CASE WHEN orderyear=2011 THEN qty END),0) AS '2011'
FROM
(SELECT custid,YEAR(orderdate) AS orderyear,qty FROM t2) AS p
GROUP BY custid;
CREATE TABLE Matrix (
orderyear INT PRIMARY KEY,
y2009 INT NULL,
y2010 INT NULL,
y2011 INT NULL
);
INSERT INTO Matrix SELECT 2009,1,0,0;
INSERT INTO Matrix SELECT 2010,0,1,0;
INSERT INTO Matrix SELECT 2011,0,0,1;
SELECT custid,
SUM(qty*y2009) AS '2009',
SUM(qty*y2010) AS '2010',
SUM(qty*y2011) AS '2011'
FROM
(SELECT custid,YEAR(orderdate) AS orderyear,qty FROM t2) AS O
INNER JOIN Matrix AS P
ON O.orderyear=P.orderyear
GROUP BY custid;
CREATE TABLE p (
custid VARCHAR(10) NOT NULL,
y2009 INT NULL,
y2010 INT NULL,
y2011 INT NULL,
PRIMARY KEY (custid)
);
INSERT INTO p
SELECT
custid,
IFNULL(SUM(CASE WHEN orderyear=2009 THEN qty END), 0) AS '2009',
IFNULL(SUM(CASE WHEN orderyear=2010 THEN qty END), 0) AS '2010',
IFNULL(SUM(CASE WHEN orderyear=2011 THEN qty END), 0) AS '2011'
FROM
(SELECT custid, YEAR(orderdate) AS orderyear, qty
FROM t2 ) AS P
GROUP BY custid;
这里把t2表返回后的内容导入到表p中,如果想得到t2表直接聚合得到的结果,这个问题就变成了Unpivoting问题。解决这个问题需要将列旋转为行。这里使用的技巧是对每行数据产生3个副本,每个副本产生一个需要旋转的列,这个过程可以通过如下的CROSS JOIN来完成。
SELECT * FROM
p,
(SELECT 2009 AS orderyear
UNION ALL SELECT 2010
UNION ALL SELECT 2011) AS o
CASE orderyear
WHEN 2009 THEN y2009
WHEN 2010 THEN y2010
WHEN 2011 THEN y2011
END AS qty
SELECT custid,orderyear,
CASE orderyear
WHEN 2009 THEN y2009
WHEN 2010 THEN y2010
WHEN 2011 THEN y2011
END AS qty
FROM
p,
(SELECT 2009 AS orderyear
UNION ALL SELECT 2010
UNION ALL SELECT 2011) AS o
SELECT custid,orderyear,qty
FROM (
SELECT custid,orderyear,
CASE orderyear
WHEN 2009 THEN y2009
WHEN 2010 THEN y2010
WHEN 2011 THEN y2011
END AS qty
FROM
p,
(SELECT 2009 AS orderyear
UNION ALL SELECT 2010
UNION ALL SELECT 2011) AS o
) AS M
WHERE qty <> 0
mysql列反转Pivoting的更多相关文章
- MySQL服务 - MySQL列类型、SQL模式、数据字典
MySQL列类型的作用: 列类型可以简单理解为用来对用户往列种存储数据时做某种范围"限定",它可以定义数据的有效值(字符.数字等).所能占据的最大存储空间.字符长度(定长或变长). ...
- mysql基础: mysql列类型--字符串
mysql列类型:整型 http://blog.csdn.net/jk110333/article/details/9342283 mysql列类型--时间和日期 http://blog.csd ...
- mysql基础:mysql列类型--时间和日期
mysql列类型--整型 http://blog.csdn.net/jk110333/article/details/9342283 mysql列类型--字符串http://blog.csdn.net ...
- MySQL 列,可选择的数据类型(通过sql命令查看:`help create table;`)
MySQL 列,可选择的数据类型(通过sql命令查看:help create table;) BIT[(length)] | TINYINT[(length)] [UNSIGNED] [ZEROFIL ...
- mysql列类型
mysql三大列类型 整型 tinyint(占据空间:1个字节 存储范围 有符号 -128-127 无符号 0-255) smallint mediumint int big ...
- Mysql 列转行group_concat函数,与行转列
1.正常情况. SELECT JoinEventIds from nt_mainnum 2.使用group_concat函数 select group_concat(JoinEventIds) fro ...
- mysql 列类型以及属性特点
整形列: 一个字节有8个位,例如:int 类型的列存入数字1,00000000 00000000 00000000 00000001它就在最低位置上存入一个1,由此可见是极大的浪费资源,所以在建立列类 ...
- mysql列的处理
MySQL 添加列,修改列,删除列 示例:ALTER TABLE tb_financial MODIFY CREATE_TIME DATETIME(3) DEFAULT NULL COMMENT '录 ...
- mysql列类型char,varchar,text,tinytext,mediumtext,longtext的比较与选择
储存不区分大小写的字符数据 TINYTEXT 最大长度是 255 (2^8 – 1) 个字符. TEXT 最大长度是 65535 (2^16 – 1) 个字符. MEDIUMTEXT 最大长度是 16 ...
随机推荐
- Nexus安装、使用说明、问题总结
Nexus安装.使用说明.问题总结 1 . 私服简介 私服是架设在局域网的一种特殊的远程仓库,目的是代理远程仓库及部署第三方构件.有了私服之后,当 Maven 需要下载构件时,直接请求私服,私服上存在 ...
- idea类里面编译报错,快速定位快捷键设置
settings---->keyMap------->Main menu----------->在搜索框里输入error,找到Next Highlighted Error 和Prev ...
- WebApi零碎总结
1.如果Content-Type是application/json,而POST和PUT的参数是[FromBody] string value,那么如果curl -d的值是'{"Name&qu ...
- django中使用memcache的一些注意事项
最近写django项目时在保存验证码方面要用到memcached,于是便查看了一些教程进行操作,结果确遇到了一系列问题,以下是一些容易遇到的雷区: 1.windows下memcached安装: -wi ...
- UWP关于图片缓存的那些破事儿
看似简单的功能,实施起来却是有着一堆大坑. 按着基本功能来写吧 1.选择图片并显示到Image控件中 2.图片序列化为byte数组以及反序列化 3.本地存储与读取 1.选择图片: 逻辑就是使用File ...
- python网络爬虫开发实战(崔庆才)_14页_chromedriver环境配置和加载
自己1,环境配置,我下载了相对应的Chromedriver(其实我也不知道对不对应,都是下载最新版的我猜应该会对应),然后在任何文件夹下输入command+shift+G,打开输入窗口,任何输入 / ...
- 利用java解压,并重命名
由于工作需要,写了一个小工具,利用java来解压文件然后对文件进行重命名 主要针对三种格式,分别是zip,rar,7z,经过我的多次实践我发现网上的类库并不能解压最新的压缩格式 对于zip格式: ma ...
- unigui+fastReport实现web打印方案
近日单位需要用到会议通知单的打印功能,故引出篇. unigui是delphi环境下快速开发web应用的优秀工具,不再赘述,下面直接记录使用搭配使用,基本逻辑就是: unigui实现数据录入和浏览的we ...
- 04、SQL 查询当天,本月,本周的记录
SELECT * FROM 表 WHERE CONVERT(Nvarchar, dateandtime, 111) = CONVERT(Nvarchar, GETDATE(), 111) ORDE ...
- 脑残式网络编程入门(五):每天都在用的Ping命令,它到底是什么?
本文引用了公众号纯洁的微笑作者奎哥的技术文章,感谢原作者的分享. 1.前言 老于网络编程熟手来说,在测试和部署网络通信应用(比如IM聊天.实时音视频等)时,如果发现网络连接超时,第一时间想到的就是 ...