题目大意:给定 N(1<N<=5000) 个不同元素组成的集合,求从中选出若干数字组成的等差数列最长是多少。

题解:直接暴力有 \(O(n^3)\) 的算法,即:枚举等差数列的前两个值,再暴力枚举后面的值进行匹配即可,不过这样做直接去世。。

考虑 \(dp[i][j]\) 表示以第 i 个数为数列倒数第二位,第 j 个数为等差数列中的最后一位的最长序列的长度,则:\(dp[i][j]=max\{dp[l][i]+1,a[i]-a[l]=a[j]-a[i]\&\&0<l<i\}\)。不过这样还是要枚举 l 进行转移,考虑序列是有序的,对于外层枚举的 i 来说,j 的枚举过程中 i 是不变的,且 a[j] 的值是单调递增的,可以利用单调性,令 l 不断减小,即可得到答案,均摊复杂度为 \(O(n^2)\)。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=5010; int n,a[maxn],dp[maxn][maxn],ans; int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
sort(a+1,a+n+1);
for(int i=1;i<=n;i++){
int l=i-1;
for(int j=i+1;j<=n;j++){
dp[i][j]=2;
while(l>=1&&a[j]-a[i]>a[i]-a[l])--l;
if(l>=1&&a[j]-a[i]==a[i]-a[l])dp[i][j]=max(dp[i][j],dp[l][i]+1);
ans=max(ans,dp[i][j]);
}
}
printf("%d\n",ans);
return 0;
}

【Asia Yokohama Regional Contest 2018】Arithmetic Progressions的更多相关文章

  1. 2018-2019, ICPC, Asia Yokohama Regional Contest 2018 K

    传送门:https://codeforces.com/gym/102082/attachments 题解: 代码: /** * ┏┓ ┏┓ * ┏┛┗━━━━━━━┛┗━━━┓ * ┃ ┃ * ┃ ━ ...

  2. Asia Yokohama Regional Contest 2018 G题 What Goes Up Must Come Down

    链接 G题 https://codeforces.com/gym/102082 使其成为单峰序列需要交换多少次相邻的数. 树状数组维护逆序对. 对于每个序列中的数,要么在单峰的左侧,要么在单峰的右侧, ...

  3. ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction hihocoder1870~1879

    ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction hihocoder1870~1879 A 签到,dfs 或者 floyd 都行. #i ...

  4. hihoCoder #1871 : Heshen's Account Book-字符串暴力模拟 自闭(getline()函数) (ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction B) 2018 ICPC 北京区域赛现场赛B

    P2 : Heshen's Account Book Time Limit:1000ms Case Time Limit:1000ms Memory Limit:512MB Description H ...

  5. hihoCoder #1870 : Jin Yong’s Wukong Ranking List-闭包传递(递归) (ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction A) 2018 ICPC 北京区域赛现场赛A

    P1 : Jin Yong’s Wukong Ranking List Time Limit:1000ms Case Time Limit:1000ms Memory Limit:512MB Desc ...

  6. 2018 ACM-ICPC Asia Beijing Regional Contest (部分题解)

    摘要 本文主要给出了2018 ACM-ICPC Asia Beijing Regional Contest的部分题解,意即熟悉区域赛题型,保持比赛感觉. Jin Yong’s Wukong Ranki ...

  7. The 2018 ACM-ICPC Asia Qingdao Regional Contest(部分题解)

    摘要: 本文是The 2018 ACM-ICPC Asia Qingdao Regional Contest(青岛现场赛)的部分解题报告,给出了出题率较高的几道题的题解,希望熟悉区域赛的题型,进而对其 ...

  8. The 2018 ACM-ICPC Asia Qingdao Regional Contest

    The 2018 ACM-ICPC Asia Qingdao Regional Contest 青岛总体来说只会3题 C #include<bits/stdc++.h> using nam ...

  9. zoj 3659 Conquer a New Region The 2012 ACM-ICPC Asia Changchun Regional Contest

    Conquer a New Region Time Limit: 5 Seconds      Memory Limit: 32768 KB The wheel of the history roll ...

随机推荐

  1. eclipse中添加tomcat

    https://blog.csdn.net/Forlogen/article/details/54090335(copy) 为了Java Web的开发,下面我们来安装一下Tomcat服务器,并将其配置 ...

  2. Django 2.11 静态页面404 解决

    在settings中配置 STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR,"static"), ...

  3. 谈谈对C#中反射的一些理解和认识(下)

    在上一篇中我们列举了一些反射的常规的使用,这一篇我们将介绍一些关于关于反射的高级属性,这些包括创建对反射的性能的总结以及如何优化反射性能,以及通过InvokeMember的方法如何去调用反射等等,通过 ...

  4. SQL Server2012中时间字段为DateTime和VarChar的区别

    在设计数据库的时候varchar类型是一个非常常见的类型,很多字段都可以使用这个类型,所以有时候在设计数据库的时候就很容易习惯性设计该类型,比如说时间类型,我们既可以DateTime类型,又可以使用v ...

  5. python数据结构与算法第三天【时间复杂度计算方法】

    最优时间复杂度(不可靠) 最坏时间复杂度(保证) 平均时间复杂度(平均状况) 不同语句的时间复杂度: (1)顺序语句:使用加法 (2)循环语句:使用乘法 (3)分支语句:使用坏时间复杂度 例如:如下代 ...

  6. 老男孩python学习自修第十一天【内置函数】

    1.基本内置函数 help() 帮助文档 dir() 列出当前文件的所有变量和方法 vars() 列出当前文件的所有变量及其值 type() 返回变量的类型 id() 返回变量的内存地址 len() ...

  7. 如何在Mac系统安装MySQL

    方法一: (1)使用brew install mysql (2)使用mysql -uroot连接时报错: Authentication plugin 'caching_sha2_password' c ...

  8. linux 地址解析协议 arp

    随便转载,保留出处:http://www.cnblogs.com/aaron-agu/ arp –na #查看 arp –s 123.253.68.209 00:19:56:6F:87:D4 #添加

  9. 数据驱动-参数化(Parameters)

    在录制程序运行的过程中,Vugen(脚本生成器)自动生成了脚本以及录制过程中实际用到的数据.在这个时候,脚本和数据是混在一起的. 在登录操作中,很明显xpj与123123是填入的数据,如果Contro ...

  10. Bootstrap之登陆页面范例

    代码: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta ...