Using Celery with Djang
This document describes the current stable version of Celery (4.0). For development docs, go here.
First steps with Django¶
Using Celery with Django
Note
Previous versions of Celery required a separate library to work with Django, but since 3.1 this is no longer the case. Django is supported out of the box now so this document only contains a basic way to integrate Celery and Django. You’ll use the same API as non-Django users so you’re recommended to read the First Steps with Celery tutorial first and come back to this tutorial. When you have a working example you can continue to the Next Steps guide.
Note
Celery 4.0 supports Django 1.8 and newer versions. Please use Celery 3.1 for versions older than Django 1.8.
To use Celery with your Django project you must first define an instance of the Celery library (called an “app”)
If you have a modern Django project layout like:
- proj/
- proj/__init__.py
- proj/settings.py
- proj/urls.py
- manage.py
then the recommended way is to create a new proj/proj/celery.py module that defines the Celery instance:
file: | proj/proj/celery.py |
---|
from __future__ import absolute_import, unicode_literals
import os
from celery import Celery # set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings') app = Celery('proj') # Using a string here means the worker don't have to serialize
# the configuration object to child processes.
# - namespace='CELERY' means all celery-related configuration keys
# should have a `CELERY_` prefix.
app.config_from_object('django.conf:settings', namespace='CELERY') # Load task modules from all registered Django app configs.
app.autodiscover_tasks() @app.task(bind=True)
def debug_task(self):
print('Request: {0!r}'.format(self.request))
Then you need to import this app in your proj/proj/__init__.py
module. This ensures that the app is loaded when Django starts so that the @shared_task
decorator (mentioned later) will use it:
proj/proj/__init__.py
:
from __future__ import absolute_import, unicode_literals # This will make sure the app is always imported when
# Django starts so that shared_task will use this app.
from .celery import app as celery_app __all__ = ['celery_app']
Note that this example project layout is suitable for larger projects, for simple projects you may use a single contained module that defines both the app and tasks, like in theFirst Steps with Celery tutorial.
Let’s break down what happens in the first module, first we import absolute imports from the future, so that our celery.py
module won’t clash with the library:
from __future__ import absolute_import
Then we set the default DJANGO_SETTINGS_MODULE
environment variable for thecelery command-line program:
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')
You don’t need this line, but it saves you from always passing in the settings module to the celery
program. It must always come before creating the app instances, as is what we do next:
app = Celery('proj')
This is our instance of the library, you can have many instances but there’s probably no reason for that when using Django.
We also add the Django settings module as a configuration source for Celery. This means that you don’t have to use multiple configuration files, and instead configure Celery directly from the Django settings; but you can also separate them if wanted.
The uppercase name-space means that all Celery configuration options must be specified in uppercase instead of lowercase, and start with CELERY_
, so for example the task_always_eager`
setting becomes CELERY_TASK_ALWAYS_EAGER
, and thebroker_url
setting becomes CELERY_BROKER_URL
.
You can pass the object directly here, but using a string is better since then the worker doesn’t have to serialize the object.
app.config_from_object('django.conf:settings', namespace='CELERY')
Next, a common practice for reusable apps is to define all tasks in a separatetasks.py
module, and Celery does have a way to auto-discover these modules:
app.autodiscover_tasks()
With the line above Celery will automatically discover tasks from all of your installed apps, following the tasks.py
convention:
- app1/
- tasks.py
- models.py
- app2/
- tasks.py
- models.py
This way you don’t have to manually add the individual modules to theCELERY_IMPORTS
setting.
Finally, the debug_task
example is a task that dumps its own request information. This is using the new bind=True
task option introduced in Celery 3.1 to easily refer to the current task instance.
Using the @shared_task
decorator
The tasks you write will probably live in reusable apps, and reusable apps cannot depend on the project itself, so you also cannot import your app instance directly.
The @shared_task
decorator lets you create tasks without having any concrete app instance:
demoapp/tasks.py
:
# Create your tasks here
from __future__ import absolute_import, unicode_literals
from celery import shared_task @shared_task
def add(x, y):
return x + y @shared_task
def mul(x, y):
return x * y @shared_task
def xsum(numbers):
return sum(numbers)
See also
You can find the full source code for the Django example project at:https://github.com/celery/celery/tree/master/examples/django/
Relative Imports
You have to be consistent in how you import the task module. For example, if you haveproject.app
in INSTALLED_APPS
, then you must also import the tasks fromproject.app
or else the names of the tasks will end up being different.
Extensions
django-celery-results
- Using the Django ORM/Cache as a result backend
The django-celery-results extension provides result backends using either the Django ORM, or the Django Cache framework.
To use this with your project you need to follow these steps:
Install the django-celery-results library:
$ pip install django-celery-results
Add
django_celery_results
toINSTALLED_APPS
.Note that there’s no dashes in this name, only underscores.
Create the Celery database tables by performing a database migrations:
$ python manage.py migrate django_celery_results
Configure Celery to use the django-celery-results backend.
Assuming you are using Django’s
settings.py
to also configure Celery, add the following settings:CELERY_RESULT_BACKEND = 'django-db'
For the cache backend you can use:
CELERY_RESULT_BACKEND = 'django-cache'
django-celery-beat
- Database-backed Periodic Tasks with Admin interface.
See Using custom scheduler classes for more information.
Starting the worker process
In a production environment you’ll want to run the worker in the background as a daemon - see Daemonization - but for testing and development it is useful to be able to start a worker instance by using the celery worker manage command, much as you’d use Django’s manage.py runserver:
$ celery -A proj worker -l info
For a complete listing of the command-line options available, use the help command:
$ celery help
Where to go from here
If you want to learn more you should continue to the Next Steps tutorial, and after that you can study the User Guide.
This document describes the current stable version of Celery (4.0). For development docs, go here.
First steps with Django
Using Celery with Django
Note
Previous versions of Celery required a separate library to work with Django, but since 3.1 this is no longer the case. Django is supported out of the box now so this document only contains a basic way to integrate Celery and Django. You’ll use the same API as non-Django users so you’re recommended to read the First Steps with Celery tutorial first and come back to this tutorial. When you have a working example you can continue to the Next Steps guide.
Note
Celery 4.0 supports Django 1.8 and newer versions. Please use Celery 3.1 for versions older than Django 1.8.
To use Celery with your Django project you must first define an instance of the Celery library (called an “app”)
If you have a modern Django project layout like:
- proj/
- proj/__init__.py
- proj/settings.py
- proj/urls.py
- manage.py
then the recommended way is to create a new proj/proj/celery.py module that defines the Celery instance:
file: | proj/proj/celery.py |
---|
from __future__ import absolute_import, unicode_literals
import os
from celery import Celery # set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings') app = Celery('proj') # Using a string here means the worker don't have to serialize
# the configuration object to child processes.
# - namespace='CELERY' means all celery-related configuration keys
# should have a `CELERY_` prefix.
app.config_from_object('django.conf:settings', namespace='CELERY') # Load task modules from all registered Django app configs.
app.autodiscover_tasks() @app.task(bind=True)
def debug_task(self):
print('Request: {0!r}'.format(self.request))
Then you need to import this app in your proj/proj/__init__.py
module. This ensures that the app is loaded when Django starts so that the @shared_task
decorator (mentioned later) will use it:
proj/proj/__init__.py
:
from __future__ import absolute_import, unicode_literals # This will make sure the app is always imported when
# Django starts so that shared_task will use this app.
from .celery import app as celery_app __all__ = ['celery_app']
Note that this example project layout is suitable for larger projects, for simple projects you may use a single contained module that defines both the app and tasks, like in theFirst Steps with Celery tutorial.
Let’s break down what happens in the first module, first we import absolute imports from the future, so that our celery.py
module won’t clash with the library:
from __future__ import absolute_import
Then we set the default DJANGO_SETTINGS_MODULE
environment variable for thecelery command-line program:
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')
You don’t need this line, but it saves you from always passing in the settings module to the celery
program. It must always come before creating the app instances, as is what we do next:
app = Celery('proj')
This is our instance of the library, you can have many instances but there’s probably no reason for that when using Django.
We also add the Django settings module as a configuration source for Celery. This means that you don’t have to use multiple configuration files, and instead configure Celery directly from the Django settings; but you can also separate them if wanted.
The uppercase name-space means that all Celery configuration options must be specified in uppercase instead of lowercase, and start with CELERY_
, so for example the task_always_eager`
setting becomes CELERY_TASK_ALWAYS_EAGER
, and thebroker_url
setting becomes CELERY_BROKER_URL
.
You can pass the object directly here, but using a string is better since then the worker doesn’t have to serialize the object.
app.config_from_object('django.conf:settings', namespace='CELERY')
Next, a common practice for reusable apps is to define all tasks in a separatetasks.py
module, and Celery does have a way to auto-discover these modules:
app.autodiscover_tasks()
With the line above Celery will automatically discover tasks from all of your installed apps, following the tasks.py
convention:
- app1/
- tasks.py
- models.py
- app2/
- tasks.py
- models.py
This way you don’t have to manually add the individual modules to theCELERY_IMPORTS
setting.
Finally, the debug_task
example is a task that dumps its own request information. This is using the new bind=True
task option introduced in Celery 3.1 to easily refer to the current task instance.
Using the @shared_task
decorator
The tasks you write will probably live in reusable apps, and reusable apps cannot depend on the project itself, so you also cannot import your app instance directly.
The @shared_task
decorator lets you create tasks without having any concrete app instance:
demoapp/tasks.py
:
# Create your tasks here
from __future__ import absolute_import, unicode_literals
from celery import shared_task @shared_task
def add(x, y):
return x + y @shared_task
def mul(x, y):
return x * y @shared_task
def xsum(numbers):
return sum(numbers)
See also
You can find the full source code for the Django example project at:https://github.com/celery/celery/tree/master/examples/django/
Relative Imports
You have to be consistent in how you import the task module. For example, if you haveproject.app
in INSTALLED_APPS
, then you must also import the tasks fromproject.app
or else the names of the tasks will end up being different.
Extensions
django-celery-results
- Using the Django ORM/Cache as a result backend
The django-celery-results extension provides result backends using either the Django ORM, or the Django Cache framework.
To use this with your project you need to follow these steps:
Install the django-celery-results library:
$ pip install django-celery-results
Add
django_celery_results
toINSTALLED_APPS
.Note that there’s no dashes in this name, only underscores.
Create the Celery database tables by performing a database migrations:
$ python manage.py migrate django_celery_results
Configure Celery to use the django-celery-results backend.
Assuming you are using Django’s
settings.py
to also configure Celery, add the following settings:CELERY_RESULT_BACKEND = 'django-db'
For the cache backend you can use:
CELERY_RESULT_BACKEND = 'django-cache'
django-celery-beat
- Database-backed Periodic Tasks with Admin interface.
See Using custom scheduler classes for more information.
Starting the worker process
In a production environment you’ll want to run the worker in the background as a daemon - see Daemonization - but for testing and development it is useful to be able to start a worker instance by using the celery worker manage command, much as you’d use Django’s manage.py runserver:
$ celery -A proj worker -l info
For a complete listing of the command-line options available, use the help command:
$ celery help
Where to go from here¶
If you want to learn more you should continue to the Next Steps tutorial, and after that you can study the User Guide.
Previous topic
Next topic
This Page
Quick search
Using Celery with Djang的更多相关文章
- Django部署以及整合celery
前言 Djngo部署的结构一般都是nginx+uwsgi+python web 一.新建一个Djang项目并合并celery 项目名随便打的..命名规范驼峰啥的别和我扯犊子哈 跑一下,然后我们就有一个 ...
- django -- Celery实现异步任务
1. 环境 python==2.7 djang==1.11.2 # 1.8, 1.9, 1.10应该都没问题 celery-with-redis==3.0 # 需要用到redis作为中间人服务(Bro ...
- django —— Celery实现异步和定时任务
1. 环境 python==2.7 djang==1.11.2 # 1.8, 1.9, 1.10应该都没问题 celery-with-redis==3.0 # 需要用到redis作为中间人服务(Bro ...
- 异步任务队列Celery在Django中的使用
前段时间在Django Web平台开发中,碰到一些请求执行的任务时间较长(几分钟),为了加快用户的响应时间,因此决定采用异步任务的方式在后台执行这些任务.在同事的指引下接触了Celery这个异步任务队 ...
- celery使用的一些小坑和技巧(非从无到有的过程)
纯粹是记录一下自己在刚开始使用的时候遇到的一些坑,以及自己是怎样通过配合redis来解决问题的.文章分为三个部分,一是怎样跑起来,并且怎样监控相关的队列和任务:二是遇到的几个坑:三是给一些自己配合re ...
- tornado+sqlalchemy+celery,数据库连接消耗在哪里
随着公司业务的发展,网站的日活数也逐渐增多,以前只需要考虑将所需要的功能实现就行了,当日活越来越大的时候,就需要考虑对服务器的资源使用消耗情况有一个清楚的认知. 最近老是发现数据库的连接数如果 ...
- celery 框架
转自:http://www.cnblogs.com/forward-wang/p/5970806.html 生产者消费者模式 在实际的软件开发过程中,经常会碰到如下场景:某个模块负责产生数据,这些数据 ...
- celery使用方法
1.celery4.0以上不支持windows,用pip安装celery 2.启动redis-server.exe服务 3.编辑运行celery_blog2.py !/usr/bin/python c ...
- Celery的实践指南
http://www.cnblogs.com/ToDoToTry/p/5453149.html Celery的实践指南 Celery的实践指南 celery原理: celery实际上是实现了一个典 ...
随机推荐
- 深化管理、提升IT的数据平台建设方案
谈到信息化,每个企业有每个企业的业务模式,每个企业有每个企业不同的思考.落地有效的信息化建设一定紧跟着企业的发展,围绕业务和管理,来提升效率,创造价值. 对于企业如何在发展的不同阶段提升信息化建设,这 ...
- 阶段一:AsyncTask的三个属性值和四个步骤
“阶段一”是指我第一次系统地学习Android开发.这主要是对我的学习过程作个记录. 最近学到用AsyncTask来处理有关网络的操作.虽然代码看上去不是很复杂,但仍有很多地方有疑惑.所以研读了一下A ...
- django ftp 研究
做个网络运维多年,一直在用filezilla搭建ftp服务器,总体上还是不错的.但是用户配置与管理方面还是不太方便,希望能够通过web页面对用户进行管理和对ftp服务器进行监控. 工具: (1)dja ...
- 怎么样在Myeclipse中配置JDK?
1.首先电脑上安装JDK 2.打开Myeclipse >> Window >> Preferences 如图1: 图1 2.Preferences >> ...
- 在tmux中的vi 上下左右键变为了ABCD等字符
在本机上用vim编辑时,上下左右键没有问题,但是在tmux中确出现ABCD等字符. 原因是在tmux这个终端,默认做了字符转换,网上搜了很多答案,解决问题的设置是: set term=xterm
- Spark SQL 之 Data Sources
#Spark SQL 之 Data Sources 转载请注明出处:http://www.cnblogs.com/BYRans/ 数据源(Data Source) Spark SQL的DataFram ...
- 烂泥:centos6 yum方式升级内核
本文由ilanniweb提供友情赞助,首发于烂泥行天下 想要获得更多的文章,可以关注我的微信ilanniweb 最近没有时间好久没有写文章了,今天由于需要安装docker学习虚拟容器的知识,需要升级O ...
- 记一次简单的SQL优化
原来的sql是这样写的 SELECT d.ONSALE_BARCODE, d.ONSALE_NAME, c.ONSALE_ID, CAST( , ) ) AS CUSTOMARY_PRICE, CAS ...
- 【repost】js 常见错误类型
1)SyntaxError SyntaxError是解析代码时发生的语法错误 // 变量名错误 var 1a; // 缺少括号 console.log 'hello'); (2)Referenc ...
- Typical EEG waveforms during sleep 睡眠状态下的几种典型EEG波形
Sources: EEG Atlas