题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1143

首先用传递闭包,知道一个点是否可以到达另一个点,即mp[i][j]==1表示i可以到j;mp[i][j]==0表示i不可以到j。
然后变成求有向无环图的最大独立集。
这是个经典问题,要变成二分图。
将每个点拆成两个点x和y
如果有边i->j,那么连边ix->jy。
然后求二分图的最大匹配,N-最大匹配就是答案。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<fstream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<utility>
#include<set>
#include<bitset>
#include<vector>
#include<functional>
#include<deque>
#include<cctype>
#include<climits>
#include<complex>
//#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj using namespace std; typedef long long LL;
typedef double DB;
typedef pair<int,int> PII;
typedef complex<DB> CP; #define mmst(a,v) memset(a,v,sizeof(a))
#define mmcy(a,b) memcpy(a,b,sizeof(a))
#define re(i,a,b) for(i=a;i<=b;i++)
#define red(i,a,b) for(i=a;i>=b;i--)
#define fi first
#define se second
#define m_p(a,b) make_pair(a,b)
#define SF scanf
#define PF printf
#define two(k) (1<<(k)) template<class T>inline T sqr(T x){return x*x;}
template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;}
template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;} const DB EPS=1e-;
inline int sgn(DB x){if(abs(x)<EPS)return ;return(x>)?:-;}
const DB Pi=acos(-1.0); inline int gint()
{
int res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
}
inline LL gll()
{
LL res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
} const int maxN=; int N,M;
int mp[maxN+][maxN+]; int first[maxN+],now;
struct Tedge{int v,next;}edge[maxN*maxN+];
int ans; inline void addedge(int u,int v)
{
now++;
edge[now].v=v;
edge[now].next=first[u];
first[u]=now;
} int vis[maxN+];
int form[maxN+]; inline int DFS(int u)
{
int i,v;
vis[u]=;
for(i=first[u],v=edge[i].v;i!=-;i=edge[i].next,v=edge[i].v)
if(!form[v] || (!vis[form[v]] && DFS(form[v])))
{
form[v]=u;
return ;
}
return ;
} int main()
{
freopen("bzoj1143.in","r",stdin);
freopen("bzoj1143.out","w",stdout);
int i,j,k;
N=gint();M=gint();
re(i,,M){int u=gint(),v=gint();mp[u][v]=;}
re(k,,N)re(i,,N)re(j,,N)if(i!=k && j!=k && i!=j && mp[i][k] && mp[k][j]) mp[i][j]=;
mmst(first,-);now=-;
re(i,,N)re(j,,N)if(mp[i][j])addedge(i,j);
ans=;
re(i,,N)
{
re(j,,N)vis[j]=;
ans+=DFS(i);
}
printf("%d\n",N-ans);
return ;
}

bzoj1143的更多相关文章

  1. BZOJ1143 [CTSC2008]祭祀river 二分图匹配 最小链覆盖

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1143 题意概括 给出一个有向图.求最小链覆盖. 题解 首先说两个概念: 链:一条链是一些点的集合, ...

  2. 【BZOJ1143】祭祀(网络流)

    [BZOJ1143]祭祀(网络流) 题面 BZOJ 洛谷 Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都 会在水面上举办盛大 ...

  3. [BZOJ1143][CTSC2008]祭祀river(Dilworth定理+二分图匹配)

    题意:给你一张n个点的DAG,最大化选择的点数,是点之间两两不可达. 要从Dilworth定理说起. Dilworth定理是定义在偏序集上的,也可以从图论的角度解释.偏序集中两个元素能比较大小,则在图 ...

  4. [BZOJ1143][CTSC2008]祭祀river(最长反链)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1143 分析: 最长反链==最小路径覆盖==n-二分图最大匹配数 某神犇对二分图的总结: ...

  5. BZOJ-1143&&BZOJ-2718 祭祀river&&毕业旅行 最长反链(Floyed传递闭包+二分图匹配)

    蛋蛋安利的双倍经验题 1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MB Submit: 1901 Solved: 951 ...

  6. BZOJ1143 [CTSC2008] 祭祀river

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=1143 题目大意: 给你n个点,点与点之间由有向边相连.如果u能到达v的话,那么他们就不能同 ...

  7. bzoj1143 2718

    最小可相交路径覆盖 先预处理可到达的点然后转化为最小不相交路径覆盖 type node=record        point,next:longint;      end; ..] of node; ...

  8. bzoj1143 祭祀river(最大独立集)

    [CTSC2008]祭祀river Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2175  Solved: 1098[Submit][Status] ...

  9. [bzoj1143][CTSC2008]祭祀

    题意:给定一个n个点m条边的有向无环图,你要选出最多的点,并且满足任意两点之间都不存在通路.2)输出每个点选了它之后还是否有最优解.   n<=100 m<=1000 题解:每个点拆两个点 ...

随机推荐

  1. MD中bitmap源代码分析--入题概述

    在MD模块中,各级raid都使用的一份bitmap的源码,也就是说共用一种bitmap的流程,下面以raid1的使用为例来分析bitmap的工作原理. 在使用raid1磁盘阵列的时候,对于数据的可靠性 ...

  2. guestfish 修改 image file

    Example guestfish sessionSometimes, you must modify a virtual machine image to remove any traces of ...

  3. velocity自定义动画

         话说好久没有写博客了,零星的整理了一些东西,没有形成系统,所以也没有在这里记录.        废话不多说了,进入今天的正题.不知道大家是否记得之前写过的一篇文章<制作炫酷的专题页面& ...

  4. zookeeper[2] zookeeper原理(转)

    转自:http://cailin.iteye.com/blog/2014486 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,它包含一个简单的原语集,分布式应用程序可以基于它实现 ...

  5. 数据库版本管理工具Flyway(4.0.3)---介绍(译文)

    Flyway Evolve your Database Schema easily and reliably across all your instances 简单的.可靠的升级(发展)你的数据库模 ...

  6. Python初体验_基础(一)

    一:变量 变量的赋值: name = "Meng" 上述代码声明了一个变量,变量名为name,变量name的值为:"Meng" 变量定义: 一个在内存存数据的容 ...

  7. 修改Android中strings.xml文件, 动态改变数据

    有些朋友可能会动态的修改Android中strings.xml文件中的值,在这里给大家推荐一种简单的方法.strings.xml中节点是支持占位符的,如下所示: <string name=&qu ...

  8. Myeclipse7.5 下载 安装 注冊 注冊码 100%成功

    myeclipse7.5启动画面 1.下载Myeclipse官方原版 官方原版:或者 http://downloads.myeclipseide.com/downloads/products/ewor ...

  9. REST、SOA、SOAP、RPC、ICE、ESB、BPM知识汇总及理解

    转载自处blog.csdn.net/tantexian. SOA: 维基百科解释:SOA:面向服务的软件架构(Service Oriented Architecture),是一种计算机软件的设计模式, ...

  10. SAN和NAS的区别

    SAN : STORAGE AREA NETWORK   存储区域网络 NAS : NETWORK ATTACHED STORAGE 网络附加存储 NAS不一定是盘阵,一台普通的主机就可以做出NAS, ...