Description

Bessie was poking around the ant hill one day watching the ants march to and fro while gathering food. She realized that many of the ants were siblings, indistinguishable from one another. She also realized the sometimes only one ant would go for food, sometimes a few, and sometimes all of them. This made for a large number of different sets of ants! Being a bit mathematical, Bessie started wondering. Bessie noted that the hive has T (1 <= T <= 1,000) families of ants which she labeled 1..T (A ants altogether). Each family had some number Ni (1 <= Ni <= 100) of ants. How many groups of sizes S, S+1, ..., B (1 <= S <= B <= A) can be formed? While observing one group, the set of three ant families was seen as {1, 1, 2, 2, 3}, though rarely in that order. The possible sets of marching ants were: 3 sets with 1 ant: {1} {2} {3} 5 sets with 2 ants: {1,1} {1,2} {1,3} {2,2} {2,3} 5 sets with 3 ants: {1,1,2} {1,1,3} {1,2,2} {1,2,3} {2,2,3} 3 sets with 4 ants: {1,2,2,3} {1,1,2,2} {1,1,2,3} 1 set with 5 ants: {1,1,2,2,3} Your job is to count the number of possible sets of ants given the data above. //有三个家庭的ANT,共五只,分别编号为1,2,2,1,3,现在将其分为2个集合及3集合,有多少种分法

Input

* Line 1: 4 space-separated integers: T, A, S, and B * Lines 2..A+1: Each line contains a single integer that is an ant type present in the hive

Output

* Line 1: The number of sets of size S..B (inclusive) that can be created. A set like {1,2} is the same as the set {2,1} and should not be double-counted. Print only the LAST SIX DIGITS of this number, with no leading zeroes or spaces.

Sample Input

3 5 2 3
1
2
2
1
3

INPUT DETAILS:

Three types of ants (1..3); 5 ants altogether. How many sets of size 2 or
size 3 can be made?

Sample Output

10

OUTPUT DETAILS:

5 sets of ants with two members; 5 more sets of ants with three members

一道背包dp、令f[i][j]表示前i个数字凑出j个集合的方案数

那么

f[i][j]=∑f[i−1][j−k]|a[i]k=0

(看这公式多高端)

然后空间上10e的效率果断用滚动数组

时间上用前缀和搞一下

#include<cstdio>
#define mod 1000000
#define MAX 100010
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,m,x,t1,t2,cur,pre,ans;
int rep[MAX],s[MAX],sum[MAX];
int f[2][MAX];
int main()
{
n=read();m=read();t1=read();t2=read();
for (int i=1;i<=m;i++)
{
x=read();
rep[x]++;
}
for(int i=1;i<=n;i++)s[i]=s[i-1]+rep[i];
f[0][0]=1;cur=1;pre=0;
for (int i=1;i<=n;i++)
{
pre^=1;cur^=1;
sum[0]=f[cur][0];
for (int j=1;j<=s[i];j++)
sum[j]=(sum[j-1]+f[cur][j])%mod;
for (int j=0;j<=s[i];j++)
if (j<=rep[i]) f[pre][j]=sum[j]%mod;
else f[pre][j]=(sum[j]-sum[j-rep[i]-1])%mod;
}
for (int i=t1;i<=t2;i++)
ans=(ans+f[pre][i])%mod;
printf("%d",ans);
}

  

bzoj1630 [Usaco2007 Demo]Ant Counting的更多相关文章

  1. bzoj2023[Usaco2005 Nov]Ant Counting 数蚂蚁*&&bzoj1630[Usaco2007 Demo]Ant Counting*

    bzoj2023[Usaco2005 Nov]Ant Counting 数蚂蚁&&bzoj1630[Usaco2007 Demo]Ant Counting 题意: t个族群,每个族群有 ...

  2. 【BZOJ1630/2023】[Usaco2007 Demo]Ant Counting DP

    [BZOJ1630/2023][Usaco2007 Demo]Ant Counting 题意:T中蚂蚁,一共A只,同种蚂蚁认为是相同的,有一群蚂蚁要出行,个数不少于S,不大于B,求总方案数 题解:DP ...

  3. bzoj1630/2023 [Usaco2007 Demo]Ant Counting

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1630 http://www.lydsy.com/JudgeOnline/problem.ph ...

  4. 【BZOJ】1630: [Usaco2007 Demo]Ant Counting(裸dp/dp/生成函数)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1630 题意,给你n种数,数量为m个,求所有的数组成的集合选长度l-r的个数 后两者待会写.. 裸dp ...

  5. bzoj 1630: [Usaco2007 Demo]Ant Counting【dp】

    满脑子组合数学,根本没想到dp 设f[i][j]为前i只蚂蚁,选出j只的方案数,初始状态为f[0][0]=1 转移为 \[ f[i][j]=\sum_{k=0}^{a[i]}f[i-1][j-k] \ ...

  6. poj 3046 Ant Counting

    Ant Counting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4982   Accepted: 1896 Desc ...

  7. BZOJ1629: [Usaco2007 Demo]Cow Acrobats

    1629: [Usaco2007 Demo]Cow Acrobats Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 601  Solved: 305[Su ...

  8. BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁

    2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 56  Solved: 16[S ...

  9. BZOJ1628: [Usaco2007 Demo]City skyline

    1628: [Usaco2007 Demo]City skyline Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 256  Solved: 210[Su ...

随机推荐

  1. 利用jquery表格添加一行并在每行第一列大写字母显示实现方法

    表格添加一行并在每行第一列大写字母显示jquery实现方法 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN& ...

  2. 杭电1142(最短路径+dfs)

    A Walk Through the Forest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

  3. vs2005中无法修改控件ID

    方法一:撤换到源代码模式下,通过代码更改id 方法二: 1.关闭VS2005: 2.删除目录 C:\Documents and Settings\Administrator\Local Setting ...

  4. Sqrt(x) 解答

    Question Implement int sqrt(int x). Compute and return the square root of x. Solution 1 -- O(log n) ...

  5. vs2008如何创建DLL和使用DLL

    一 动态库的编译 文件->新建->项目 选择下一步:然后在应用程序类型里选择DLL 在test项目的头文件里加上test.h;并添加下列代码 在test.cpp里增加如下代码 然后F7编译 ...

  6. 图的遍历(DFS、BFS)

    理论: 深度优先搜索(Depth_Fisrst Search)遍历类似于树的先根遍历,是树的先根遍历的推广: 广度优先搜索(Breadth_First Search) 遍历类似于树的按层次遍历的过程: ...

  7. java类加载器行为[笔记]

    1. Java虚拟机使用第一个类的第一件事情就是将该类的字节码装进来,装载类字节码的功能是由类装器完成的,类半遮器负责根据一个类的名称来定位和生成类的字节码数据后返回给Java虚拟机. 2. 类装载器 ...

  8. According to TLD or attribute directive in tag file, attribute value does not accept any expressions

    1.错误描写叙述 2014-7-13 17:27:21 org.apache.jasper.compiler.TldLocationsCache tldScanJar 信息: At least one ...

  9. 批量创建prefab

    using UnityEngine; using System.Collections; using UnityEngine.UI; using System.IO; using UnityEdito ...

  10. iOS8 Core Image In Swift:自动改善图像以及内置滤镜的使用

    iOS8 Core Image In Swift:自动改善图像以及内置滤镜的使用 iOS8 Core Image In Swift:更复杂的滤镜 iOS8 Core Image In Swift:人脸 ...