Description

Bessie was poking around the ant hill one day watching the ants march to and fro while gathering food. She realized that many of the ants were siblings, indistinguishable from one another. She also realized the sometimes only one ant would go for food, sometimes a few, and sometimes all of them. This made for a large number of different sets of ants! Being a bit mathematical, Bessie started wondering. Bessie noted that the hive has T (1 <= T <= 1,000) families of ants which she labeled 1..T (A ants altogether). Each family had some number Ni (1 <= Ni <= 100) of ants. How many groups of sizes S, S+1, ..., B (1 <= S <= B <= A) can be formed? While observing one group, the set of three ant families was seen as {1, 1, 2, 2, 3}, though rarely in that order. The possible sets of marching ants were: 3 sets with 1 ant: {1} {2} {3} 5 sets with 2 ants: {1,1} {1,2} {1,3} {2,2} {2,3} 5 sets with 3 ants: {1,1,2} {1,1,3} {1,2,2} {1,2,3} {2,2,3} 3 sets with 4 ants: {1,2,2,3} {1,1,2,2} {1,1,2,3} 1 set with 5 ants: {1,1,2,2,3} Your job is to count the number of possible sets of ants given the data above. //有三个家庭的ANT,共五只,分别编号为1,2,2,1,3,现在将其分为2个集合及3集合,有多少种分法

Input

* Line 1: 4 space-separated integers: T, A, S, and B * Lines 2..A+1: Each line contains a single integer that is an ant type present in the hive

Output

* Line 1: The number of sets of size S..B (inclusive) that can be created. A set like {1,2} is the same as the set {2,1} and should not be double-counted. Print only the LAST SIX DIGITS of this number, with no leading zeroes or spaces.

Sample Input

3 5 2 3
1
2
2
1
3

INPUT DETAILS:

Three types of ants (1..3); 5 ants altogether. How many sets of size 2 or
size 3 can be made?

Sample Output

10

OUTPUT DETAILS:

5 sets of ants with two members; 5 more sets of ants with three members

一道背包dp、令f[i][j]表示前i个数字凑出j个集合的方案数

那么

f[i][j]=∑f[i−1][j−k]|a[i]k=0

(看这公式多高端)

然后空间上10e的效率果断用滚动数组

时间上用前缀和搞一下

#include<cstdio>
#define mod 1000000
#define MAX 100010
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,m,x,t1,t2,cur,pre,ans;
int rep[MAX],s[MAX],sum[MAX];
int f[2][MAX];
int main()
{
n=read();m=read();t1=read();t2=read();
for (int i=1;i<=m;i++)
{
x=read();
rep[x]++;
}
for(int i=1;i<=n;i++)s[i]=s[i-1]+rep[i];
f[0][0]=1;cur=1;pre=0;
for (int i=1;i<=n;i++)
{
pre^=1;cur^=1;
sum[0]=f[cur][0];
for (int j=1;j<=s[i];j++)
sum[j]=(sum[j-1]+f[cur][j])%mod;
for (int j=0;j<=s[i];j++)
if (j<=rep[i]) f[pre][j]=sum[j]%mod;
else f[pre][j]=(sum[j]-sum[j-rep[i]-1])%mod;
}
for (int i=t1;i<=t2;i++)
ans=(ans+f[pre][i])%mod;
printf("%d",ans);
}

  

bzoj1630 [Usaco2007 Demo]Ant Counting的更多相关文章

  1. bzoj2023[Usaco2005 Nov]Ant Counting 数蚂蚁*&&bzoj1630[Usaco2007 Demo]Ant Counting*

    bzoj2023[Usaco2005 Nov]Ant Counting 数蚂蚁&&bzoj1630[Usaco2007 Demo]Ant Counting 题意: t个族群,每个族群有 ...

  2. 【BZOJ1630/2023】[Usaco2007 Demo]Ant Counting DP

    [BZOJ1630/2023][Usaco2007 Demo]Ant Counting 题意:T中蚂蚁,一共A只,同种蚂蚁认为是相同的,有一群蚂蚁要出行,个数不少于S,不大于B,求总方案数 题解:DP ...

  3. bzoj1630/2023 [Usaco2007 Demo]Ant Counting

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1630 http://www.lydsy.com/JudgeOnline/problem.ph ...

  4. 【BZOJ】1630: [Usaco2007 Demo]Ant Counting(裸dp/dp/生成函数)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1630 题意,给你n种数,数量为m个,求所有的数组成的集合选长度l-r的个数 后两者待会写.. 裸dp ...

  5. bzoj 1630: [Usaco2007 Demo]Ant Counting【dp】

    满脑子组合数学,根本没想到dp 设f[i][j]为前i只蚂蚁,选出j只的方案数,初始状态为f[0][0]=1 转移为 \[ f[i][j]=\sum_{k=0}^{a[i]}f[i-1][j-k] \ ...

  6. poj 3046 Ant Counting

    Ant Counting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4982   Accepted: 1896 Desc ...

  7. BZOJ1629: [Usaco2007 Demo]Cow Acrobats

    1629: [Usaco2007 Demo]Cow Acrobats Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 601  Solved: 305[Su ...

  8. BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁

    2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 56  Solved: 16[S ...

  9. BZOJ1628: [Usaco2007 Demo]City skyline

    1628: [Usaco2007 Demo]City skyline Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 256  Solved: 210[Su ...

随机推荐

  1. Linux权限机制

    权限是操作系统用来限制用户.组.进程对操作系统资源(文件.设备等)的访问的机制 权限分为:读.写.执行,一般表示为 r.w.x http://itercast.com/lecture/22 每个文件或 ...

  2. 方案:手动升级WordPress系统

    对于WordPress系统及时进行更新维护是十分必须的操作,更新维护不仅可以更新系统服务功能,还能够完善安全系统.      如果你是虚拟主机的用户,可以使用FTP账户进行自动更新服务,但是如果你是V ...

  3. HDU 5424 Rikka with Graph II

    题目大意: 在 N 个点 N 条边组成的图中判断是否存在汉密尔顿路径. 思路:忽略重边与自回路,先判断是否连通,否则输出"NO",DFS搜索是否存在汉密尔顿路径. #include ...

  4. HDOJ-1015 Safecracker(DFS)

    http://acm.hdu.edu.cn/showproblem.php?pid=1015 题意:给出一个目标值target和一个由大写字母组成的字符串 A-Z分别对应权值1-26 要求从给出的字符 ...

  5. 【POJ1005】I Think I Need a Houseboat

    说是计算几何,其实是一道水题.直接算半圆面积即可. #include <iostream> #include <cstdlib> #include <cstdio> ...

  6. <% %> 、 <%= %> 、<%# %> 的区别

    1,<% %>用来绑定后台代码    中间一般放函数或者方法,典型的asp程序写法. 在前台页面可以写后台代码                 相当于开辟了C#空间,可以写C#代码 2,& ...

  7. [每日一题] OCP1z0-047 :2013-08-17 EXTERNAL TABLE――加载数据 ............................56

    正确答案:C 一.对答案解释: A.       TYPE:有两个选可供选择: 1.        ORACLE_LOADER:传统方式,与SQLLDR一样,参数从多,应用较多. 2.         ...

  8. 【SQL学习笔记】排名开窗函数,聚合开窗函数(Over by)

    处理一些分组后,该组按照某列排序后 ,取其中某条完整数据的问题. 或 按照其中不同列分组后的聚合 比如 sum,avg之类. MSDN上语法: Ranking Window Functions < ...

  9. js获取 input file 图片缩略图

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  10. Installing the Eclipse Plugin

    Installing the Eclipse Plugin Android offers a custom plugin for the Eclipse IDE, called Android Dev ...