http://www.lydsy.com/JudgeOnline/problem.php?id=1064

思路:第一眼看的时候以为是差分约束,但是是做不了的,不过能保证的就是这题绝对是图论题。。。(废话)

分联通块考虑,如果每个联通块都是没有有向环的话,那么各个联通块中,最长链就是最大答案,3就是最小答案。

只要有一个联通块有环,那么答案一定是这个环长度的因数,最大答案,就是这些环长度的gcd

不过,要是有这个非正常的环怎么办?

我们可以看到,4->3和2->3都指向了3,这怎么办?那么我们只要在一开始建图的时候,原来的有向边权值为1,再同时建一个反向边权值为-1,把有向图变成无向图。

为什么?,因为如图,4可以到3,2也可以到3,说明2的编号和4相同,所以2->3->4的路径实际上是"走出去一步,又走回来一步",也就是我常说的"有来有回",按照我们刚才的建图方式,这个环的长度就是:1+1+1+1-1=3,事实上,答案也是如此,3和5编号相同,2和4编号相同,这样图中实际上是只有3种面具。

 #include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
int tot,go[],next[],first[];
int c[],dis[],vis[],n,m,len,val[];
int read(){
int t=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
void insert(int x,int y,int z){
tot++;
go[tot]=y;
next[tot]=first[x];
first[x]=tot;
val[tot]=z;
}
void add(int x,int y){
insert(x,y,);insert(y,x,-);
}
int gcd(int a,int b){
if (b==) return a;
else return gcd(b,a%b);
}
int bfs(int x){
int h=,t=;c[]=x;vis[x]=;dis[x]=;
int mxdis=,mndis=;
while (h<=t){
int now=c[h++];
for (int i=first[now];i;i=next[i]){
int pur=go[i];
if (vis[pur]){
len=gcd(len,val[i]+dis[now]-dis[pur]);
continue;
}
vis[pur]=;
c[++t]=pur;
dis[pur]=dis[now]+val[i];
mxdis=std::max(mxdis,dis[pur]);
mndis=std::min(mndis,dis[pur]);
}
}
return mxdis-mndis+;
}
int main(){
n=read();m=read();
for (int i=;i<=m;i++){
int x=read(),y=read();
add(x,y);
}
int sum=;
for (int i=;i<=n;i++)
if (!vis[i]) sum+=bfs(i);
len=std::abs(len);
if (len){
if (len<) {
printf("-1 -1\n");
return ;
}
printf("%d ",len);
for (int i=;i<=len;i++)
if (len%i==) {
printf("%d\n",i);
break;
}
return ;
}else
if (sum<){
printf("-1 -1\n");
return ;
}else{
printf("%d 3\n",sum);
return ;
}
}

BZOJ 1064 假面舞会的更多相关文章

  1. BZOJ 1064 假面舞会(NOI2008) DFS判环

    此题,回想Sunshinezff学长给我们出的模拟题,原题啊有木有!!此处吐槽Sunshinezff爷出题不人道!! 不过也感谢Sunshinezff学长的帮助,我才能做出来.. 1064: [Noi ...

  2. bzoj 1064 假面舞会 图论??+dfs

    有两种情况需要考虑 1.链:可以发现对最终的k没有影响 2.环:如果是真环(即1->2->3->4->1),可以看出所有可行解一定是该环的因数 假环呢??(1->2-&g ...

  3. 图论 公约数 找环和链 BZOJ [NOI2008 假面舞会]

    BZOJ 1064: [Noi2008]假面舞会 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1655  Solved: 798[Submit][S ...

  4. 【BZOJ】1064: [Noi2008]假面舞会(判环+gcd+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1064 表示想到某一种情况就不敢写下去了.... 就是找环的gcd...好可怕.. 于是膜拜了题解.. ...

  5. 1064: [Noi2008]假面舞会 - BZOJ

    Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具.每个面具都有一个编号,主办 ...

  6. NOI2008假面舞会

    1064: [Noi2008]假面舞会 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 883  Solved: 462[Submit][Status] ...

  7. [BZOJ1064][Noi2008]假面舞会

    [BZOJ1064][Noi2008]假面舞会 试题描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢 ...

  8. Codevs 1800 假面舞会 2008年NOI全国竞赛

    1800 假面舞会 2008年NOI全国竞赛 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 一年一度的假面舞会又开始了,栋栋也 ...

  9. [补档][NOI 2008]假面舞会

    [NOI 2008]假面舞会 题目 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一个自己喜欢的面具. 每个面具都有一 ...

随机推荐

  1. FATAL:NO bootable medium found!System halted.

    问题描述:致命错误,没有可引导的媒体.系统挂起.以下是在网上查的: 1:检查硬盘的类型,ide或sata接口是否在0,0或是在1,0. 2:光驱是否选择iso文件. 3:iso文件是否损坏4:virt ...

  2. 安装Oracle10g on RedHat as 4 64bit(摘)

    一.安装前的配置 1.修改RH版本 vi /etc/redhat-release Red Hat Enterprise Linux AS release 3 (Taroon Update 3) 2. ...

  3. Absolute sort

    Absolute sort Let's try some sorting. Here is an array with the specific rules. The array (a tuple) ...

  4. 学艺不精,又被shell的管道给坑了

    我用过bash shell,而且时间不短了.但我从来没学过shell,至少没有像C++这么认真去学.平时写些基本的脚本没问题,不懂也可以google.百度.可在2014最后一天,掉坑里了. 其实脚本也 ...

  5. Unity SendMessage方法

    我们今天研究下SendMessage方法, 如果我们需要执行某一个组件的方法时候可以使用SendMessage gameObject.SendMessage("A"); 即可通知当 ...

  6. iOS 面试常见问题最全梳理

    序言 目前形势,参加到iOS队伍的人是越来越多,甚至已经到供过于求了.今年,找过工作人可能会更深刻地体会到今年的就业形势不容乐观,加之,培训机构一火车地向用人单位输送iOS开发人员,打破了生态圈的动态 ...

  7. Jenkins动态部署方案

    在之前一个项目开发中使用到了jenkins自动化测试,根据实际应用,简单整理了其部署方案. 1.部署 2.项目构建 3.重部署 1 部署 登录Jenkins应用管理界面 1)选中一个服务器上已在jen ...

  8. Hibernate(五)——面向对象查询语言和锁

    Hibernate做了数据库中表和我们实体类的映射,使我们不必再编写sql语言了.但是有时候查询的特殊性,还是需要我们手动来写查询语句呢,Hibernate框架为了解决这个问题给我们提供了HQL(Hi ...

  9. redis安装配置和使用;tomcat安装和使用

    virtualbox主要有以下几种方式(不同版本号称法不一样,但实质是一样的): 1.Intelnal Network:利用主机上的全部的虚拟机构建一个虚拟网络 2.NAT:能訪问互联网,不能訪问主机 ...

  10. 飘逸的python - hack输出流便于调试

    当项目有很多文件时,要找出控制台的输出是在哪里print出来的很麻烦,不过这事对于强大的python来说小菜一碟. 先上代码和效果,再说明. import sys,traceback class my ...