BZOJ 1064 假面舞会
http://www.lydsy.com/JudgeOnline/problem.php?id=1064
思路:第一眼看的时候以为是差分约束,但是是做不了的,不过能保证的就是这题绝对是图论题。。。(废话)
分联通块考虑,如果每个联通块都是没有有向环的话,那么各个联通块中,最长链就是最大答案,3就是最小答案。
只要有一个联通块有环,那么答案一定是这个环长度的因数,最大答案,就是这些环长度的gcd
不过,要是有这个非正常的环怎么办?
我们可以看到,4->3和2->3都指向了3,这怎么办?那么我们只要在一开始建图的时候,原来的有向边权值为1,再同时建一个反向边权值为-1,把有向图变成无向图。
为什么?,因为如图,4可以到3,2也可以到3,说明2的编号和4相同,所以2->3->4的路径实际上是"走出去一步,又走回来一步",也就是我常说的"有来有回",按照我们刚才的建图方式,这个环的长度就是:1+1+1+1-1=3,事实上,答案也是如此,3和5编号相同,2和4编号相同,这样图中实际上是只有3种面具。
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
int tot,go[],next[],first[];
int c[],dis[],vis[],n,m,len,val[];
int read(){
int t=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
void insert(int x,int y,int z){
tot++;
go[tot]=y;
next[tot]=first[x];
first[x]=tot;
val[tot]=z;
}
void add(int x,int y){
insert(x,y,);insert(y,x,-);
}
int gcd(int a,int b){
if (b==) return a;
else return gcd(b,a%b);
}
int bfs(int x){
int h=,t=;c[]=x;vis[x]=;dis[x]=;
int mxdis=,mndis=;
while (h<=t){
int now=c[h++];
for (int i=first[now];i;i=next[i]){
int pur=go[i];
if (vis[pur]){
len=gcd(len,val[i]+dis[now]-dis[pur]);
continue;
}
vis[pur]=;
c[++t]=pur;
dis[pur]=dis[now]+val[i];
mxdis=std::max(mxdis,dis[pur]);
mndis=std::min(mndis,dis[pur]);
}
}
return mxdis-mndis+;
}
int main(){
n=read();m=read();
for (int i=;i<=m;i++){
int x=read(),y=read();
add(x,y);
}
int sum=;
for (int i=;i<=n;i++)
if (!vis[i]) sum+=bfs(i);
len=std::abs(len);
if (len){
if (len<) {
printf("-1 -1\n");
return ;
}
printf("%d ",len);
for (int i=;i<=len;i++)
if (len%i==) {
printf("%d\n",i);
break;
}
return ;
}else
if (sum<){
printf("-1 -1\n");
return ;
}else{
printf("%d 3\n",sum);
return ;
}
}
BZOJ 1064 假面舞会的更多相关文章
- BZOJ 1064 假面舞会(NOI2008) DFS判环
此题,回想Sunshinezff学长给我们出的模拟题,原题啊有木有!!此处吐槽Sunshinezff爷出题不人道!! 不过也感谢Sunshinezff学长的帮助,我才能做出来.. 1064: [Noi ...
- bzoj 1064 假面舞会 图论??+dfs
有两种情况需要考虑 1.链:可以发现对最终的k没有影响 2.环:如果是真环(即1->2->3->4->1),可以看出所有可行解一定是该环的因数 假环呢??(1->2-&g ...
- 图论 公约数 找环和链 BZOJ [NOI2008 假面舞会]
BZOJ 1064: [Noi2008]假面舞会 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1655 Solved: 798[Submit][S ...
- 【BZOJ】1064: [Noi2008]假面舞会(判环+gcd+特殊的技巧)
http://www.lydsy.com/JudgeOnline/problem.php?id=1064 表示想到某一种情况就不敢写下去了.... 就是找环的gcd...好可怕.. 于是膜拜了题解.. ...
- 1064: [Noi2008]假面舞会 - BZOJ
Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具.每个面具都有一个编号,主办 ...
- NOI2008假面舞会
1064: [Noi2008]假面舞会 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 883 Solved: 462[Submit][Status] ...
- [BZOJ1064][Noi2008]假面舞会
[BZOJ1064][Noi2008]假面舞会 试题描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢 ...
- Codevs 1800 假面舞会 2008年NOI全国竞赛
1800 假面舞会 2008年NOI全国竞赛 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 一年一度的假面舞会又开始了,栋栋也 ...
- [补档][NOI 2008]假面舞会
[NOI 2008]假面舞会 题目 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一个自己喜欢的面具. 每个面具都有一 ...
随机推荐
- FATAL:NO bootable medium found!System halted.
问题描述:致命错误,没有可引导的媒体.系统挂起.以下是在网上查的: 1:检查硬盘的类型,ide或sata接口是否在0,0或是在1,0. 2:光驱是否选择iso文件. 3:iso文件是否损坏4:virt ...
- 安装Oracle10g on RedHat as 4 64bit(摘)
一.安装前的配置 1.修改RH版本 vi /etc/redhat-release Red Hat Enterprise Linux AS release 3 (Taroon Update 3) 2. ...
- Absolute sort
Absolute sort Let's try some sorting. Here is an array with the specific rules. The array (a tuple) ...
- 学艺不精,又被shell的管道给坑了
我用过bash shell,而且时间不短了.但我从来没学过shell,至少没有像C++这么认真去学.平时写些基本的脚本没问题,不懂也可以google.百度.可在2014最后一天,掉坑里了. 其实脚本也 ...
- Unity SendMessage方法
我们今天研究下SendMessage方法, 如果我们需要执行某一个组件的方法时候可以使用SendMessage gameObject.SendMessage("A"); 即可通知当 ...
- iOS 面试常见问题最全梳理
序言 目前形势,参加到iOS队伍的人是越来越多,甚至已经到供过于求了.今年,找过工作人可能会更深刻地体会到今年的就业形势不容乐观,加之,培训机构一火车地向用人单位输送iOS开发人员,打破了生态圈的动态 ...
- Jenkins动态部署方案
在之前一个项目开发中使用到了jenkins自动化测试,根据实际应用,简单整理了其部署方案. 1.部署 2.项目构建 3.重部署 1 部署 登录Jenkins应用管理界面 1)选中一个服务器上已在jen ...
- Hibernate(五)——面向对象查询语言和锁
Hibernate做了数据库中表和我们实体类的映射,使我们不必再编写sql语言了.但是有时候查询的特殊性,还是需要我们手动来写查询语句呢,Hibernate框架为了解决这个问题给我们提供了HQL(Hi ...
- redis安装配置和使用;tomcat安装和使用
virtualbox主要有以下几种方式(不同版本号称法不一样,但实质是一样的): 1.Intelnal Network:利用主机上的全部的虚拟机构建一个虚拟网络 2.NAT:能訪问互联网,不能訪问主机 ...
- 飘逸的python - hack输出流便于调试
当项目有很多文件时,要找出控制台的输出是在哪里print出来的很麻烦,不过这事对于强大的python来说小菜一碟. 先上代码和效果,再说明. import sys,traceback class my ...