#include <iostream>
#include <math.h>
#include <iomanip> #define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps) #define pi acos(-1.0) struct point
{
double x, y;
}; struct line
{
point a, b;
};
struct point3
{
double x, y, z;
};
struct line3
{
point3 a, b;
};
struct plane3
{
point3 a, b, c;
}; //计算cross product (P1-P0)x(P2-P0)
double xmult(point p1, point p2, point p0)
{
return (p1.x - p0.x)*(p2.y - p0.y) - (p2.x - p0.x)*(p1.y - p0.y);
}
//计算dot product (P1-P0).(P2-P0)
double dmult(point p1, point p2, point p0)
{
return (p1.x - p0.x)*(p2.x - p0.x) + (p1.y - p0.y)*(p2.y - p0.y);
}
//计算cross product U . V
point3 xmult(point3 u, point3 v)
{
point3 ret;
ret.x = u.y*v.z - v.y*u.z;
ret.y = u.z*v.x - u.x*v.z;
ret.z = u.x*v.y - u.y*v.x;
return ret;
}
//计算dot product U . V
double dmult(point3 u, point3 v)
{
return u.x*v.x + u.y*v.y + u.z*v.z;
} //两点距离
double distance(point p1, point p2)
{
return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y));
} //判三点共线
bool dots_inline(point p1, point p2, point p3)
{
return zero(xmult(p1, p2, p3));
} //判点是否在线段上,包括端点
bool dot_online_in(point p, line l)
{
return zero(xmult(p, l.a, l.b)) && (l.a.x - p.x)*(l.b.x - p.x) < eps && (l.a.y - p.y)*(l.b.y - p.y) < eps;
} //判点是否在线段上,不包括端点
bool dot_online_ex(point p, line l)
{
return dot_online_in(p, l) && (!zero(p.x - l.a.x) || !zero(p.y - l.a.y)) && (!zero(p.x - l.b.x) || !zero(p.y - l.b.y));
} //判两点在线段同侧,点在线段上返回0
bool same_side(point p1, point p2, line l)
{
return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) > eps;
} //判两点在线段异侧,点在线段上返回0
bool opposite_side(point p1, point p2, line l)
{
return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) < -eps;
} //判两直线平行
bool parallel(line u, line v)
{
return zero((u.a.x - u.b.x)*(v.a.y - v.b.y) - (v.a.x - v.b.x)*(u.a.y - u.b.y));
} //判两直线垂直
bool perpendicular(line u, line v)
{
return zero((u.a.x - u.b.x)*(v.a.x - v.b.x) + (u.a.y - u.b.y)*(v.a.y - v.b.y));
} //判两线段相交,包括端点和部分重合
bool intersect_in(line u, line v)
{
if (!dots_inline(u.a, u.b, v.a) || !dots_inline(u.a, u.b, v.b))
return !same_side(u.a, u.b, v) && !same_side(v.a, v.b, u);
return dot_online_in(u.a, v) || dot_online_in(u.b, v) || dot_online_in(v.a, u) || dot_online_in(v.b, u);
} //判两线段相交,不包括端点和部分重合
bool intersect_ex(line u, line v)
{
return opposite_side(u.a, u.b, v) && opposite_side(v.a, v.b, u);
} //计算两直线交点,注意事先判断直线是否平行!
//线段交点请另外判线段相交(同时还是要判断是否平行!)
point intersection(line u, line v)
{
point ret = u.a;
double t = ((u.a.x - v.a.x)*(v.a.y - v.b.y) - (u.a.y - v.a.y)*(v.a.x - v.b.x)) / ((u.a.x - u.b.x)*(v.a.y - v.b.y) - (u.a.y - u.b.y)*(v.a.x - v.b.x));
ret.x += (u.b.x - u.a.x)*t;
ret.y += (u.b.y - u.a.y)*t;
return ret;
}
point intersection(point u1, point u2, point v1, point v2)
{
point ret = u1;
double t = ((u1.x - v1.x)*(v1.y - v2.y) - (u1.y - v1.y)*(v1.x - v2.x)) / ((u1.x - u2.x)*(v1.y - v2.y) - (u1.y - u2.y)*(v1.x - v2.x));
ret.x += (u2.x - u1.x)*t;
ret.y += (u2.y - u1.y)*t;
return ret;
}
//点到直线上的最近点
point ptoline(point p, line l)
{
point t = p;
t.x += l.a.y - l.b.y, t.y += l.b.x - l.a.x;
return intersection(p, t, l.a, l.b);
} //点到直线距离
double disptoline(point p, line l)
{
return fabs(xmult(p, l.a, l.b)) / distance(l.a, l.b);
} //点到线段上的最近点
point ptoseg(point p, line l)
{
point t = p;
t.x += l.a.y - l.b.y, t.y += l.b.x - l.a.x;
if (xmult(l.a, t, p)*xmult(l.b, t, p) > eps)
return distance(p, l.a) < distance(p, l.b) ? l.a : l.b;
return intersection(p, t, l.a, l.b);
} //点到线段距离
double disptoseg(point p, line l)
{
point t = p;
t.x += l.a.y - l.b.y, t.y += l.b.x - l.a.x;
if (xmult(l.a, t, p)*xmult(l.b, t, p) > eps)
return distance(p, l.a) < distance(p, l.b) ? distance(p, l.a) : distance(p, l.b);
return fabs(xmult(p, l.a, l.b)) / distance(l.a, l.b);
} //矢量V 以P 为顶点逆时针旋转angle 并放大scale 倍
point rotate(point v, point p, double angle, double scale)
{
point ret = p;
v.x -= p.x, v.y -= p.y;
p.x = scale*cos(angle);
p.y = scale*sin(angle);
ret.x += v.x*p.x - v.y*p.y;
ret.y += v.x*p.y + v.y*p.x;
return ret;
} //计算三角形面积,输入三顶点
double area_triangle(point p1, point p2, point p3)
{
return fabs(xmult(p1, p2, p3)) / 2;
} //计算三角形面积,输入三边长
double area_triangle(double a, double b, double c)
{
double s = (a + b + c) / 2;
return sqrt(s*(s - a)*(s - b)*(s - c));
} //计算多边形面积,顶点按顺时针或逆时针给出
double area_polygon(int n, point* p)
{
double s1 = 0, s2 = 0;
int i;
for (i = 0; i < n; i++)
s1 += p[(i + 1)%n].y*p[i].x, s2 += p[(i + 1)%n].y*p[(i + 2)%n].x;
return fabs(s1 - s2) / 2;
} //计算圆心角lat 表示纬度,-90<=w<=90,lng 表示经度
//返回两点所在大圆劣弧对应圆心角,0<=angle<=pi
double angle(double lng1, double lat1, double lng2, double lat2)
{
double dlng = fabs(lng1 - lng2)*pi / 180;
while (dlng >= pi + pi)
dlng -= pi + pi;
if (dlng > pi)
dlng = pi + pi - dlng;
lat1 *= pi / 180, lat2 *= pi / 180;
return acos(cos(lat1)*cos(lat2)*cos(dlng) + sin(lat1)*sin(lat2));
} //计算距离,r 为球半径
double line_dist(double r, double lng1, double lat1, double lng2, double lat2)
{
double dlng = fabs(lng1 - lng2)*pi / 180;
while (dlng >= pi + pi)
dlng -= pi + pi;
if (dlng > pi)
dlng = pi + pi - dlng;
lat1 *= pi / 180, lat2 *= pi / 180;
return r*sqrt(2 - 2 * (cos(lat1)*cos(lat2)*cos(dlng) + sin(lat1)*sin(lat2)));
} //计算球面距离,r 为球半径
inline double sphere_dist(double r, double lng1, double lat1, double lng2, double lat2)
{
return r*angle(lng1, lat1, lng2, lat2);
} //外心
point circumcenter(point a, point b, point c)
{
line u, v;
u.a.x = (a.x + b.x) / 2;
u.a.y = (a.y + b.y) / 2;
u.b.x = u.a.x - a.y + b.y;
u.b.y = u.a.y + a.x - b.x;
v.a.x = (a.x + c.x) / 2;
v.a.y = (a.y + c.y) / 2;
v.b.x = v.a.x - a.y + c.y;
v.b.y = v.a.y + a.x - c.x;
return intersection(u, v);
} //内心
point incenter(point a, point b, point c)
{
line u, v;
double m, n;
u.a = a;
m = atan2(b.y - a.y, b.x - a.x);
n = atan2(c.y - a.y, c.x - a.x);
u.b.x = u.a.x + cos((m + n) / 2);
u.b.y = u.a.y + sin((m + n) / 2);
v.a = b;
m = atan2(a.y - b.y, a.x - b.x);
n = atan2(c.y - b.y, c.x - b.x);
v.b.x = v.a.x + cos((m + n) / 2);
v.b.y = v.a.y + sin((m + n) / 2);
return intersection(u, v);
} //垂心
point perpencenter(point a, point b, point c)
{
line u, v;
u.a = c;
u.b.x = u.a.x - a.y + b.y;
u.b.y = u.a.y + a.x - b.x;
v.a = b;
v.b.x = v.a.x - a.y + c.y;
v.b.y = v.a.y + a.x - c.x;
return intersection(u, v);
}
//重心
//到三角形三顶点距离的平方和最小的点
//三角形内到三边距离之积最大的点
point barycenter(point a, point b, point c)
{
line u, v;
u.a.x = (a.x + b.x) / 2;
u.a.y = (a.y + b.y) / 2;
u.b = c;
v.a.x = (a.x + c.x) / 2;
v.a.y = (a.y + c.y) / 2;
v.b = b;
return intersection(u, v);
} //费马点
//到三角形三顶点距离之和最小的点
point fermentpoint(point a, point b, point c)
{
point u, v;
double step = fabs(a.x) + fabs(a.y) + fabs(b.x) + fabs(b.y) + fabs(c.x) + fabs(c.y);
int i, j, k;
u.x = (a.x + b.x + c.x) / 3;
u.y = (a.y + b.y + c.y) / 3;
while (step > 1e-10)
{
for (k = 0; k < 10; step /= 2, k++)
{
for (i = -1; i <= 1; i++)
{
for (j = -1; j <= 1; j++)
{
v.x = u.x + step*i;
v.y = u.y + step*j;
if (distance(u, a) + distance(u, b) + distance(u, c) > distance(v, a) + distance(v, b) + distance(v, c))
{
u = v;
}
}
}
}
}
return u;
} //矢量差 U - V
point3 subt(point3 u, point3 v)
{
point3 ret;
ret.x = u.x - v.x;
ret.y = u.y - v.y;
ret.z = u.z - v.z;
return ret;
} ///三维///
//取平面法向量
point3 pvec(plane3 s)
{
return xmult(subt(s.a, s.b), subt(s.b, s.c));
}
point3 pvec(point3 s1, point3 s2, point3 s3)
{
return xmult(subt(s1, s2), subt(s2, s3));
} //两点距离,单参数取向量大小
double distance(point3 p1, point3 p2)
{
return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y) + (p1.z - p2.z)*(p1.z - p2.z));
} //向量大小
double vlen(point3 p)
{
return sqrt(p.x*p.x + p.y*p.y + p.z*p.z);
} //判三点共线
bool dots_inline(point3 p1, point3 p2, point3 p3)
{
return vlen(xmult(subt(p1, p2), subt(p2, p3))) < eps;
} //判四点共面
bool dots_onplane(point3 a, point3 b, point3 c, point3 d)
{
return zero(dmult(pvec(a, b, c), subt(d, a)));
} //判点是否在线段上,包括端点和共线
bool dot_online_in(point3 p, line3 l)
{
return zero(vlen(xmult(subt(p, l.a), subt(p, l.b)))) && (l.a.x - p.x)*(l.b.x - p.x) < eps && (l.a.y - p.y)*(l.b.y - p.y) < eps && (l.a.z - p.z)*(l.b.z - p.z) < eps;
} //判点是否在线段上,不包括端点
bool dot_online_ex(point3 p, line3 l)
{
return dot_online_in(p, l) && (!zero(p.x - l.a.x) || !zero(p.y - l.a.y) || !zero(p.z - l.a.z)) && (!zero(p.x - l.b.x) || !zero(p.y - l.b.y) || !zero(p.z - l.b.z));
} //判点是否在空间三角形上,包括边界,三点共线无意义
bool dot_inplane_in(point3 p, plane3 s)
{
return zero(vlen(xmult(subt(s.a, s.b), subt(s.a, s.c))) - vlen(xmult(subt(p, s.a), subt(p, s.b))) - vlen(xmult(subt(p, s.b), subt(p, s.c))) - vlen(xmult(subt(p, s.c), subt(p, s.a))));
} //判点是否在空间三角形上,不包括边界,三点共线无意义
bool dot_inplane_ex(point3 p, plane3 s)
{
return dot_inplane_in(p, s) && vlen(xmult(subt(p, s.a), subt(p, s.b))) > eps && vlen(xmult(subt(p, s.b), subt(p, s.c))) > eps && vlen(xmult(subt(p, s.c), subt(p, s.a))) > eps;
} //判两点在线段同侧,点在线段上返回0,不共面无意义
bool same_side(point3 p1, point3 p2, line3 l)
{
return dmult(xmult(subt(l.a, l.b), subt(p1, l.b)), xmult(subt(l.a, l.b), subt(p2, l.b))) > eps;
} //判两点在线段异侧,点在线段上返回0,不共面无意义
bool opposite_side(point3 p1, point3 p2, line3 l)
{
return dmult(xmult(subt(l.a, l.b), subt(p1, l.b)), xmult(subt(l.a, l.b), subt(p2, l.b))) < -eps;
} //判两点在平面同侧,点在平面上返回0
bool same_side(point3 p1, point3 p2, plane3 s)
{
return dmult(pvec(s), subt(p1, s.a))*dmult(pvec(s), subt(p2, s.a)) > eps;
}
bool same_side(point3 p1, point3 p2, point3 s1, point3 s2, point3 s3)
{
return dmult(pvec(s1, s2, s3), subt(p1, s1))*dmult(pvec(s1, s2, s3), subt(p2, s1)) > eps;
} //判两点在平面异侧,点在平面上返回0
bool opposite_side(point3 p1, point3 p2, plane3 s)
{
return dmult(pvec(s), subt(p1, s.a))*dmult(pvec(s), subt(p2, s.a)) < -eps;
}
bool opposite_side(point3 p1, point3 p2, point3 s1, point3 s2, point3 s3)
{
return dmult(pvec(s1, s2, s3), subt(p1, s1))*dmult(pvec(s1, s2, s3), subt(p2, s1)) < -eps;
}
//判两直线平行
bool parallel(line3 u, line3 v)
{
return vlen(xmult(subt(u.a, u.b), subt(v.a, v.b))) < eps;
} //判两平面平行
bool parallel(plane3 u, plane3 v)
{
return vlen(xmult(pvec(u), pvec(v))) < eps;
} //判直线与平面平行
bool parallel(line3 l, plane3 s)
{
return zero(dmult(subt(l.a, l.b), pvec(s)));
}
bool parallel(point3 l1, point3 l2, point3 s1, point3 s2, point3 s3)
{
return zero(dmult(subt(l1, l2), pvec(s1, s2, s3)));
} //判两直线垂直
bool perpendicular(line3 u, line3 v)
{
return zero(dmult(subt(u.a, u.b), subt(v.a, v.b)));
} //判两平面垂直
bool perpendicular(plane3 u, plane3 v)
{
return zero(dmult(pvec(u), pvec(v)));
} //判直线与平面平行
bool perpendicular(line3 l, plane3 s)
{
return vlen(xmult(subt(l.a, l.b), pvec(s))) < eps;
} //判两线段相交,包括端点和部分重合
bool intersect_in(line3 u, line3 v)
{
if (!dots_onplane(u.a, u.b, v.a, v.b))
return 0;
if (!dots_inline(u.a, u.b, v.a) || !dots_inline(u.a, u.b, v.b))
return !same_side(u.a, u.b, v) && !same_side(v.a, v.b, u);
return dot_online_in(u.a, v) || dot_online_in(u.b, v) || dot_online_in(v.a, u) || dot_online_in(v.b, u);
} //判两线段相交,不包括端点和部分重合
bool intersect_ex(line3 u, line3 v)
{
return dots_onplane(u.a, u.b, v.a, v.b) && opposite_side(u.a, u.b, v) && opposite_side(v.a, v.b, u);
} //判线段与空间三角形相交,包括交于边界和(部分)包含
bool intersect_in(line3 l, plane3 s)
{
return !same_side(l.a, l.b, s) && !same_side(s.a, s.b, l.a, l.b, s.c) && !same_side(s.b, s.c, l.a, l.b, s.a) && !same_side(s.c, s.a, l.a, l.b, s.b);
} //判线段与空间三角形相交,不包括交于边界和(部分)包含
bool intersect_ex(line3 l, plane3 s)
{
return opposite_side(l.a, l.b, s) && opposite_side(s.a, s.b, l.a, l.b, s.c) && opposite_side(s.b, s.c, l.a, l.b, s.a) && opposite_side(s.c, s.a, l.a, l.b, s.b);
} //计算两直线交点,注意事先判断直线是否共面和平行!
//线段交点请另外判线段相交(同时还是要判断是否平行!)
point3 intersection(line3 u, line3 v)
{
point3 ret = u.a;
double t = ((u.a.x - v.a.x)*(v.a.y - v.b.y) - (u.a.y - v.a.y)*(v.a.x - v.b.x))
/ ((u.a.x - u.b.x)*(v.a.y - v.b.y) - (u.a.y - u.b.y)*(v.a.x - v.b.x));
ret.x += (u.b.x - u.a.x)*t;
ret.y += (u.b.y - u.a.y)*t;
ret.z += (u.b.z - u.a.z)*t;
return ret;
} //计算直线与平面交点,注意事先判断是否平行,并保证三点不共线!
//线段和空间三角形交点请另外判断
point3 intersection(line3 l, plane3 s)
{
point3 ret = pvec(s);
double t = (ret.x*(s.a.x - l.a.x) + ret.y*(s.a.y - l.a.y) + ret.z*(s.a.z - l.a.z)) / (ret.x*(l.b.x - l.a.x) + ret.y*(l.b.y - l.a.y) + ret.z*(l.b.z - l.a.z));
ret.x = l.a.x + (l.b.x - l.a.x)*t;
ret.y = l.a.y + (l.b.y - l.a.y)*t;
ret.z = l.a.z + (l.b.z - l.a.z)*t;
return ret;
}
point3 intersection(point3 l1, point3 l2, point3 s1, point3 s2, point3 s3)
{
point3 ret = pvec(s1, s2, s3);
double t = (ret.x*(s1.x - l1.x) + ret.y*(s1.y - l1.y) + ret.z*(s1.z - l1.z)) /
(ret.x*(l2.x - l1.x) + ret.y*(l2.y - l1.y) + ret.z*(l2.z - l1.z));
ret.x = l1.x + (l2.x - l1.x)*t;
ret.y = l1.y + (l2.y - l1.y)*t;
ret.z = l1.z + (l2.z - l1.z)*t;
return ret;
} //计算两平面交线,注意事先判断是否平行,并保证三点不共线!
line3 intersection(plane3 u, plane3 v)
{
line3 ret;
ret.a = parallel(v.a, v.b, u.a, u.b, u.c) ? intersection(v.b, v.c, u.a, u.b, u.c) : intersection(v.a, v.b, u.a, u.b, u.c);
ret.b = parallel(v.c, v.a, u.a, u.b, u.c) ? intersection(v.b, v.c, u.a, u.b, u.c) : intersection(v.c, v.a, u.a, u.b, u.c);
return ret;
}
line3 intersection(point3 u1, point3 u2, point3 u3, point3 v1, point3 v2, point3 v3)
{
line3 ret;
ret.a = parallel(v1, v2, u1, u2, u3) ? intersection(v2, v3, u1, u2, u3) : intersection(v1, v2, u1, u2, u3);
ret.b = parallel(v3, v1, u1, u2, u3) ? intersection(v2, v3, u1, u2, u3) : intersection(v3, v1, u1, u2, u3);
return ret;
}
//点到直线距离
double ptoline(point3 p, line3 l)
{
return vlen(xmult(subt(p, l.a), subt(l.b, l.a))) / distance(l.a, l.b);
} //点到平面距离
double ptoplane(point3 p, plane3 s)
{
return fabs(dmult(pvec(s), subt(p, s.a))) / vlen(pvec(s));
} //直线到直线距离
double linetoline(line3 u, line3 v)
{
point3 n = xmult(subt(u.a, u.b), subt(v.a, v.b));
return fabs(dmult(subt(u.a, v.a), n)) / vlen(n);
} //两直线夹角cos 值
double angle_cos(line3 u, line3 v)
{
return dmult(subt(u.a, u.b), subt(v.a, v.b)) / vlen(subt(u.a, u.b)) / vlen(subt(v.a, v.b));
} //两平面夹角cos 值
double angle_cos(plane3 u, plane3 v)
{
return dmult(pvec(u), pvec(v)) / vlen(pvec(u)) / vlen(pvec(v));
} //直线平面夹角sin 值
double angle_sin(line3 l, plane3 s)
{
return dmult(subt(l.a, l.b), pvec(s)) / vlen(subt(l.a, l.b)) / vlen(pvec(s));
} int main()
{
int t;
std::cin >> t;
std::cout << "INTERSECTING LINES OUTPUT" << std::endl;
while (t--)
{
line a, b;
std::cin >> a.a.x >> a.a.y >> a.b.x >> a.b.y >> b.a.x >> b.a.y >> b.b.x >> b.b.y; if (xmult(a.a, a.b, b.a) == 0 && xmult(a.a, a.b, b.b) == 0)
{
std::cout << "LINE" << std::endl;
}
else if (parallel(a, b))
{
std::cout << "NONE" << std::endl;
}
else
{
point temp;
temp = intersection(a, b);
std::cout << std::fixed << std::setprecision(2) << "POINT" << ' ' << temp.x << ' ' << temp.y << std::endl;
}
}
std::cout << "END OF OUTPUT" << std::endl;
}

Poj 1269 Intersecting Lines_几何模板的更多相关文章

  1. POJ 1269 - Intersecting Lines - [平面几何模板题]

    题目链接:http://poj.org/problem?id=1269 Time Limit: 1000MS Memory Limit: 10000K Description We all know ...

  2. POJ 1269 Intersecting Lines(判断两直线位置关系)

    题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...

  3. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

  4. POJ 1269 Intersecting Lines (判断直线位置关系)

    题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...

  5. POJ 1269 Intersecting Lines(几何)

    题目链接 题意 : 给你两条线段的起点和终点,一共四个点,让你求交点坐标,如果这四个点是共线的,输出“LINE”,如果是平行的就输出“NONE”. 思路 : 照着ZN留下的模板果然好用,直接套上模板了 ...

  6. 简单几何(直线位置) POJ 1269 Intersecting Lines

    题目传送门 题意:判断两条直线的位置关系,共线或平行或相交 分析:先判断平行还是共线,最后就是相交.平行用叉积判断向量,共线的话也用叉积判断点,相交求交点 /********************* ...

  7. poj 1269 Intersecting Lines

    题目链接:http://poj.org/problem?id=1269 题目大意:给出四个点的坐标x1,y1,x2,y2,x3,y3,x4,y4,前两个形成一条直线,后两个坐标形成一条直线.然后问你是 ...

  8. ●POJ 1269 Intersecting Lines

    题链: http://poj.org/problem?id=1269 题解: 计算几何,直线交点 模板题,试了一下直线的向量参数方程求交点的方法. (方法详见<算法竞赛入门经典——训练指南> ...

  9. POJ 1269 Intersecting Lines --计算几何

    题意: 二维平面,给两条线段,判断形成的直线是否重合,或是相交于一点,或是不相交. 解法: 简单几何. 重合: 叉积为0,且一条线段的一个端点到另一条直线的距离为0 不相交: 不满足重合的情况下叉积为 ...

随机推荐

  1. 年度钜献,108个大数据文档PDF开放下载

    1.大数据的开放式创新——吴甘沙 相关阅读:[PPT]吴甘沙:让不同领域的数据真正流动.融合起来,才能释放大数据的价值 下载:大数据的开放式创新——吴甘沙.pdf 2.微软严治庆——让大数据为每个人服 ...

  2. [Ubuntu]在Ubuntu下搭建自己的源服务器

    1.摘要     网上有很很多关于搭建源镜像的文章,但是对于一般人来讲,用不着镜像所有的deb包,只对我们能用到的感兴趣.另外,对于一些在Ubuntu的源中没有的软件,我们也可以放在我们自己的源里,这 ...

  3. SQL 通配符

    在搜索数据库中的数据时,SQL 通配符可以替代一个或多个字符.SQL 通配符必须与 LIKE 运算符一起使用,必须放在引号内. 在 SQL 中,可使用以下通配符: %:替代一个或多个字符. _:仅替代 ...

  4. 实现action的三种方法

    1.一个普通的类 public class testAction1 { public String execute(){ return "success"; } } 2.实现Act ...

  5. 对数组元素进行排序的方法总结(利用C++)

    首先,对数组元素进行排序方法总结为以下两类: 一.简单排序算法(时间复杂度O(n*n)) 1.插入排序 2.选择排序 3.交换排序,即冒泡排序 二.先进排序算法(时间复杂度O(n*logn)) 1.快 ...

  6. IOS 排序算法

    /** * @brief 冒泡排序法 * * @param arr 需要排序的数组 */ -(void)BubbleSort:(NSMutableArray *)arr { // 取第一个与其邻接的对 ...

  7. ios常用的几个动画代码

      #import "MianViewController.h" #import <QuartzCore/QuartzCore.h> @interface MianVi ...

  8. Unity3d修炼之路:载入一个预制体,然后为该对象加入组件,然后查找对象,得到组件。

    #pragma strict function Awake(){ //载入一个预制体 资源必须在 Resources目录下 Resources.LoadLoad(); //载入后 必须演示样例化 Ga ...

  9. android开发工具类总结(一)

    一.日志工具类 Log.java public class L { private L() { /* 不可被实例化 */ throw new UnsupportedOperationException ...

  10. Oracle sql语言模糊查询--like后面的通配符

    关于like后面的条件,Oracle提供了四种匹配模式: 1,% :表示任意0个或多个字符.可匹配任意类型和长度的字符,有些情况下若是中文,请使用两个百分号(%%)表示. 比如 SELECT * FR ...