Not so Mobile 

Before being an ubiquous communications gadget, a mobile was just a structure made of strings and wires suspending colourfull things. This kind of mobile is usually found hanging over cradles of small babies.

 

The figure illustrates a simple mobile. It is just a wire, suspended by a string, with an object on each side. It can also be seen as a kind of lever with the fulcrum on the point where the string ties the wire. From the lever principle we know that to balance a simple mobile the product of the weight of the objects by their distance to the fulcrum must be equal. That isWl×Dl = Wr×Dr where Dl is the left distance, Dr is the right distance, Wl is the left weight and Wr is the right weight.

In a more complex mobile the object may be replaced by a sub-mobile, as shown in the next figure. In this case it is not so straightforward to check if the mobile is balanced so we need you to write a program that, given a description of a mobile as input, checks whether the mobile is in equilibrium or not.

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

The input is composed of several lines, each containing 4 integers separated by a single space. The 4 integers represent the distances of each object to the fulcrum and their weights, in the format: Wl Dl Wr Dr

If Wl or Wr is zero then there is a sub-mobile hanging from that end and the following lines define the the sub-mobile. In this case we compute the weight of the sub-mobile as the sum of weights of all its objects, disregarding the weight of the wires and strings. If both Wl and Wr are zero then the following lines define two sub-mobiles: first the left then the right one.

Output

For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.

Write `YES' if the mobile is in equilibrium, write `NO' otherwise.

Sample Input

1

0 2 0 4
0 3 0 1
1 1 1 1
2 4 4 2
1 6 3 2

Sample Output

YES
题解:题意是让求这个杠杆是不是平衡;看了大神的代码,处理的很巧妙,如果当前质量是0,递归输入子天平,每个子天平判断是否平衡,就可以了;
代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
#define SI(x) scanf("%d",&x)
#define mem(x,y) memset(x,y,sizeof(x))
#define PI(x) printf("%d",x)
#define P_ printf(" ")
const int INF=0x3f3f3f3f;
typedef long long LL;
bool solve(int &w){
int w1,d1,w2,d2;
scanf("%d%d%d%d",&w1,&d1,&w2,&d2);
int temp1=true,temp2=true;
if(!w1)temp1=solve(w1);
if(!w2)temp2=solve(w2);
w=w1+w2;
if(w1*d1==w2*d2&&temp1&&temp2)return true;
else return false;
}
int main(){
int T;
SI(T);
while(T--){
int w;
if(solve(w))puts("YES");
else puts("NO");
if(T)puts("");
}
return 0;
}

  

uva-699 Not so Mobile (杠杆,巧妙递归)的更多相关文章

  1. UVa 839 -- Not so Mobile(树的递归输入)

    UVa 839 Not so Mobile(树的递归输入) 判断一个树状天平是否平衡,每个测试样例每行4个数 wl,dl,wr,dr,当wl*dl=wr*dr时,视为这个天平平衡,当wl或wr等于0是 ...

  2. UVa 699 The Falling Leaves(递归建树)

    UVa 699 The Falling Leaves(递归建树) 假设一棵二叉树也会落叶  而且叶子只会垂直下落   每个节点保存的值为那个节点上的叶子数   求所有叶子全部下落后   地面从左到右每 ...

  3. UVA.839 Not so Mobile ( 二叉树 DFS)

    UVA.839 Not so Mobile ( 二叉树 DFS) 题意分析 给出一份天平,判断天平是否平衡. 一开始使用的是保存每个节点,节点存储着两边的质量和距离,但是一直是Runtime erro ...

  4. UVA.699 The Falling Leaves (二叉树 思维题)

    UVA.699 The Falling Leaves (二叉树 思维题) 题意分析 理解题意花了好半天,其实就是求建完树后再一条竖线上的所有节点的权值之和,如果按照普通的建树然后在计算的方法,是不方便 ...

  5. UVA 839 Not so Mobile (递归建立二叉树)

    题目连接:http://acm.hust.edu.cn/vjudge/problem/19486 给你一个杠杆两端的物体的质量和力臂,如果质量为零,则下面是一个杠杆,判断是否所有杠杆平衡. 分析:递归 ...

  6. UVa 839 Not so Mobile (递归思想处理树)

    Before being an ubiquous communications gadget, a mobilewas just a structure made of strings and wir ...

  7. 二叉树的递归遍历 The Falling Leaves UVa 699

    题意:对于每一棵树,每一个结点都有它的水平位置,左子结点在根节点的水平位置-1,右子节点在根节点的位置+1,从左至右输出每个水平位置的节点之和 解题思路:由于上题所示的遍历方式如同二叉树的前序遍历,与 ...

  8. 【紫书】 The Falling Leaves UVA - 699 递归得简单

    题意:给你一颗二叉树的前序遍历,空子树以-1表示,将左右子树的权值投影到一维数轴上,左儿子位置为根位置-1,右儿子+1求个个整点上的和: 题解:递归,整个过程只需维护一个sum数组. 更新根,更新le ...

  9. UVA 699 The Falling Leaves (递归先序建立二叉树)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/19244 #include <iostream> #include <cstdio> # ...

随机推荐

  1. querySelectorAll的BUG

    querySelector和querySelectorAll是W3C提供的新的查询接口 目前 IE8/9及Firefox/Chrome/Safari/Opera 的最新版已经支持它们. 但是Eleme ...

  2. 自定义Edit控件控制输入范围

    //自定义Edit,实现十六进制输入控制,使用OnChar()函数实现 //MyEdit.h #pragma once class CMyEdit : public CEdit { DECLARE_D ...

  3. FAQ: Python中if __name__ == '__main__':作用

    #hello.pydef sayHello(): str="hello" print(str); if __name__ == "__main__": prin ...

  4. CDC变更数据捕获

    CDC变更数据捕获 (2013-03-20 15:25:52)   分类: SQL SQL Server中记录数据变更的四个方法:触发器.Output子句.变更数据捕获(Change Data Cap ...

  5. Umbraco扩展开发

    国内Umbraco方面的资料很少,搜集到一些国外的优秀项目或插件.记录下来,便于日后使用: backoffice:https://github.com/TimGeyssens 后台扩展UI,可以在这里 ...

  6. 2016 Multi-University Training Contest 5&6 总结

    第五场和第六场多校都打得很糟糕. 能做到不以物喜不以己悲是假的,这对队伍的情绪也可以算上是比较大的打击. 很多时候我们发现了问题,但是依旧没有采取有效的方法去解决它,甚至也没有尝试去改变.这是一件相当 ...

  7. iOS 视图跳转

    //跳转 - ( void)present:( id )sender { NSLog ( @"the button,is clicked …" ); // 创建准备跳转的 UIVi ...

  8. 美国TJX公司 - MBA智库百科

    美国TJX公司 - MBA智库百科 TJX公司总部设在美国波士顿,在北美地区和许多欧洲国家开有连锁分店,仅在美国就有2500多家分店. TJX Companies, Inc. 是美国和全世界的服装和家 ...

  9. Largest Rectangle in a Histogram(最大矩形面积,动态规划思想)

    Largest Rectangle in a Histogram Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  10. SQL学习之组合查询(UNION)

    1.大多数的SQL查询只包含从一个或多个表中返回数据的单条SELECT语句,但是,SQL也允许执行多个查询(多条SELECT语句),并将结果作为一个查询结果集返回.这些组合查询通常称为并或复合查询. ...