《算法导论》读书笔记之动态规划—最长公共子序列 & 最长公共子串(LCS)
From:http://my.oschina.net/leejun2005/blog/117167
1、先科普下最长公共子序列 & 最长公共子串的区别:
找两个字符串的最长公共子串,这个子串要求在原字符串中是连续的。而最长公共子序列则并不要求连续。
2、最长公共子串
其实这是一个序贯决策问题,可以用动态规划来求解。我们采用一个二维矩阵来记录中间的结果。这个二维矩阵怎么构造呢?直接举个例子吧:"bab"和"caba"(当然我们现在一眼就可以看出来最长公共子串是"ba"或"ab")
b a b
c 0 0 0
a 0 1 0
b 1 0 1
a 0 1 0
我们看矩阵的斜对角线最长的那个就能找出最长公共子串。
不过在二维矩阵上找最长的由1组成的斜对角线也是件麻烦费时的事,下面改进:当要在矩阵是填1时让它等于其左上角元素加1。
b a b
c 0 0 0
a 0 1 0
b 1 0 2
a 0 2 0
这样矩阵中的最大元素就是 最长公共子串的长度。
在构造这个二维矩阵的过程中由于得出矩阵的某一行后其上一行就没用了,所以实际上在程序中可以用一维数组来代替这个矩阵。
2.1 代码如下:
public class LCString2 { public static void getLCString(char[] str1, char[] str2) {
int i, j;
int len1, len2;
len1 = str1.length;
len2 = str2.length;
int maxLen = len1 > len2 ? len1 : len2;
int[] max = new int[maxLen];
int[] maxIndex = new int[maxLen];
int[] c = new int[maxLen]; // 记录对角线上的相等值的个数 for (i = 0; i < len2; i++) {
for (j = len1 - 1; j >= 0; j--) {
if (str2[i] == str1[j]) {
if ((i == 0) || (j == 0))
c[j] = 1;
else
c[j] = c[j - 1] + 1;
} else {
c[j] = 0;
} if (c[j] > max[0]) { // 如果是大于那暂时只有一个是最长的,而且要把后面的清0;
max[0] = c[j]; // 记录对角线元素的最大值,之后在遍历时用作提取子串的长度
maxIndex[0] = j; // 记录对角线元素最大值的位置 for (int k = 1; k < maxLen; k++) {
max[k] = 0;
maxIndex[k] = 0;
}
} else if (c[j] == max[0]) { // 有多个是相同长度的子串
for (int k = 1; k < maxLen; k++) {
if (max[k] == 0) {
max[k] = c[j];
maxIndex[k] = j;
break; // 在后面加一个就要退出循环了
} }
}
}
} for (j = 0; j < maxLen; j++) {
if (max[j] > 0) {
System.out.println("第" + (j + 1) + "个公共子串:");
for (i = maxIndex[j] - max[j] + 1; i <= maxIndex[j]; i++)
System.out.print(str1[i]);
System.out.println(" ");
}
}
} public static void main(String[] args) { String str1 = new String("123456abcd567");
String str2 = new String("234dddabc45678");
// String str1 = new String("aab12345678cde");
// String str2 = new String("ab1234yb1234567");
getLCString(str1.toCharArray(), str2.toCharArray());
}
}
ref:
LCS的java算法---考虑可能有多个相同的最长公共子串
http://blog.csdn.net/rabbitbug/article/details/1740557
最大子序列、最长递增子序列、最长公共子串、最长公共子序列、字符串编辑距离
http://www.cnblogs.com/zhangchaoyang/articles/2012070.html
2.2 其实 awk 写起来也很容易:
echo "123456abcd567
234dddabc45678"|awk -vFS="" 'NR==1{str=$0}NR==2{N=NF;for(n=0;n++<N;){s="";for(t=n;t<=N;t++){s=s""$t;if(index(str,s)){a[n]=t-n;b[n]=s;if(m<=a[n])m=a[n]}else{t=N}}}}END{for(n=0;n++<N;)if(a[n]==m)print b[n]}'
ref:http://bbs.chinaunix.net/thread-4055834-2-1.html
3、最长公共子序列
import java.util.Random; public class LCS { public static void main(String[] args) { // 随机生成字符串
// String x = GetRandomStrings(substringLength1);
// String y = GetRandomStrings(substringLength2);
String x = "a1b2c3";
String y = "1a1wbz2c123a1b2c123";
// 设置字符串长度
int substringLength1 = x.length();
int substringLength2 = y.length(); // 具体大小可自行设置 // 构造二维数组记录子问题x[i]和y[i]的LCS的长度
int[][] opt = new int[substringLength1 + 1][substringLength2 + 1]; // 从后向前,动态规划计算所有子问题。也可从前到后。
for (int i = substringLength1 - 1; i >= 0; i--) {
for (int j = substringLength2 - 1; j >= 0; j--) {
if (x.charAt(i) == y.charAt(j))
opt[i][j] = opt[i + 1][j + 1] + 1;// 状态转移方程
else
opt[i][j] = Math.max(opt[i + 1][j], opt[i][j + 1]);// 状态转移方程
}
}
System.out.println("substring1:" + x);
System.out.println("substring2:" + y);
System.out.print("LCS:"); int i = 0, j = 0;
while (i < substringLength1 && j < substringLength2) {
if (x.charAt(i) == y.charAt(j)) {
System.out.print(x.charAt(i));
i++;
j++;
} else if (opt[i + 1][j] >= opt[i][j + 1])
i++;
else
j++;
}
} // 取得定长随机字符串
public static String GetRandomStrings(int length) {
StringBuffer buffer = new StringBuffer("abcdefghijklmnopqrstuvwxyz");
StringBuffer sb = new StringBuffer();
Random r = new Random();
int range = buffer.length();
for (int i = 0; i < length; i++) {
sb.append(buffer.charAt(r.nextInt(range)));
}
return sb.toString();
}
}
REF:
字符串最大公共子序列以及最大公共子串问题
http://gongqi.iteye.com/blog/1517447
动态规划算法解最长公共子序列LCS问题
http://blog.csdn.net/v_JULY_v/article/details/6110269
《算法导论》读书笔记之动态规划—最长公共子序列 & 最长公共子串(LCS)的更多相关文章
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- 《算法导论》— Chapter 15 动态规划
序 算法导论一书的第四部分-高级设计和分析技术从本章开始讨论,主要分析高效算法的三种重要技术:动态规划.贪心算法以及平摊分析三种. 首先,本章讨论动态规划,它是通过组合子问题的解而解决整个问题的,通常 ...
- 数据结构与算法JavaScript 读书笔记
由于自己在对数组操作这块比较薄弱,然后经高人指点,需要好好的攻读一下这本书籍,原本想这个书名就比较高深,这下不好玩了.不过看着看着突然觉得讲的东西都比较基础.不过很多东西,平时还是没有注意到,故写出读 ...
- 动态规划——最长公共子序列&&最长公共子串
最长公共子序列(LCS)是一类典型的动归问题. 问题 给定两个序列(整数序列或者字符串)A和B,序列的子序列定义为从序列中按照索引单调增加的顺序取出若干个元素得到的新的序列,比如从序列A中取出 A ...
- 二维动态规划&&二分查找的动态规划&&最长递增子序列&&最长连续递增子序列
题目描述与背景介绍 背景题目: [674. 最长连续递增序列]https://leetcode-cn.com/problems/longest-continuous-increasing-subseq ...
- 简单动态规划——最长公共子序列&&最长回文子序列&&最长上升||下降子序列
最长公共子序列,顾名思义当然是求两个字符串的最长公共子序列啦,当然,这只是一道非常菜的动规,所以直接附上代码: #include<iostream> #include<cstdio& ...
- 动态规划 ---- 最长公共子序列(Longest Common Subsequence, LCS)
分析: 完整代码: // 最长公共子序列 #include <stdio.h> #include <algorithm> using namespace std; ; char ...
- C语言 · 最长公共子序列 · 最长字符序列
算法提高篇有两个此类题目: 算法提高 最长字符序列 时间限制:1.0s 内存限制:256.0MB 最长字符序列 问题描述 设x(i), y(i), z(i)表示单个字符,则X={x( ...
随机推荐
- FPGA知识大梳理(四)FPGA中的复位系统大汇总
本文整合特权(吴厚航)和coyoo(王敏志)两位大神的博文.我也很推崇这两位大神的书籍,特权的书籍要偏基础一下,大家不要一听我这么说就想买coyoo的.我还是那一句话,做技术就要step by ste ...
- xfire发布的Webservice中Spring注入为空的解决方案
Spring框架使用中注入为空是一个比较头疼的问题,遇到Webservice和Spring框架配合时,这个问题更容易出现并很难发现问题的原因. 在做SSO系统中就遇到这样的问题,在Service的实现 ...
- kinect for windows - 手势识别之一,C++实现
用C++来实现手势识别是比较困难的,所以在这个例子,我们只实现了握拳和松手的手势识别,其他没有实现. 先上个效果图: 在这个程序里,我们打开了kinect的RGB流,深度流,骨骼数据流和手势识别流.其 ...
- 程序员眼中的UML
--克服用例图的恐惧 在实际工作中,大部分程序员很少接触到需求分析,即使有需求分析,也是草草了事,没有用正规的方式来表达,所以一般程序员使用用例图的机会是不多的.但是却又常常在各种媒体上看见用例图,于 ...
- HDU 3415 Max Sum of Max-K-sub-sequence
题目大意:找长度不超过k的最大字段和. 题解:单调队列维护之前k的最小值,思想是对于每一个入队的新元素,如果队尾元素比其大则一直删减,然后插入新元素,对于队首的元素若与当前枚举两相差超过k则直接删去. ...
- jQuery EasyUI 数字框(NumberBox)用法
这里的options是选项,可以参考下表: 选项名 类型 描述 默认值 min 数字 文本框中可允许的最小值 null max 数字 文本框中可允许的最大值 null precision 数字 最高可 ...
- android 在新建短信时,加入名称为","(英文逗号)的联系人时,应用崩溃的修改
请修改文件 /alps/frameworks/ex/chips/src/com/android/ex/chips/RecipientAlternatesAdapter.java private sta ...
- JQuery的JSTree使用
这是一个树形菜单的展示.其功能及其强大,几乎可以提供你对树结构的各种要求.下面,对其简述. 首先,感谢 Ivan Bozhanov利用JQuery对该组件的开发.同时还要感谢我的技术总监Mr. ...
- CSS的clear属性
以下引用自w3school clear 属性定义了元素的哪边上不允许出现浮动元素.在 CSS1 和 CSS2 中,这是通过自动为清除元素(即设置了 clear 属性的元素)增加上外边距实现的.在 CS ...
- F - 蜘蛛牌(深度搜索)
Problem Description 蜘蛛牌是windows xp操作系统自带的一款纸牌游戏,游戏规则是这样的:只能将牌拖到比她大一的牌上面(A最小,K最大),如果拖动的牌上有按顺序排好的牌时,那么 ...