Today, Yelp held a tech talk in Columbia University about the data warehouse adopted by Yelp.

Yelp used Amazon Redshift as data warehouse.

There are several features for Redshift:

1. Massively Parellel Processing

2. SQL access

3. Column-based Datastore

Benefits are:

1. Data is structured, accessible and well documented.
2. Architecture allows for easy extensibility and sharing across teams.
3. Allows use of entire SQL-compatible tool ecosystem.

Details:

Massively Parellel Processing (MMP)

Traditional BigData always uses Hadoop + MapReduce. MapReduce's native control mechanism is Java code (to implement the Map and Reduce logic), whereas MPP products are queried with SQL(Structural Query Language). You can refer detail here.

Below is the structure for implementing MMP.

Similarly, Data is distributed across each segment database to achieve data and processing parallelism. This is achieved by creating a database table with DISTRIBUTED BY clause. By using this clause data is automatically distributed across segment databases. (referrence: Introduction to MMP)

Typical query sentence in MMP

Column-based Datastore

Enables sparse table definitions
Enables compact storage
Improve scanning/filtering

(Benefits: wiki)

Column-based Datastore

  1. Column-oriented organizations are more efficient when an aggregate needs to be computed over many rows but only for a notably smaller subset of all columns of data, because reading that smaller subset of data can be faster than reading all data.
  2. Column-oriented organizations are more efficient when new values of a column are supplied for all rows at once, because that column data can be written efficiently and replace old column data without touching any other columns for the rows.
  3. Row-oriented organizations are more efficient when many columns of a single row are required at the same time, and when row-size is relatively small, as the entire row can be retrieved with a single disk seek.
  4. Row-oriented organizations are more efficient when writing a new row if all of the row data is supplied at the same time, as the entire row can be written with a single disk seek.

In practice, row-oriented storage layouts are well-suited for OLTP-like workloads which are more heavily loaded with interactive transactions. Column-oriented storage layouts are well-suited for OLAP-like workloads (e.g., data warehouses) which typically involve a smaller number of highly complex queries over all data (possibly terabytes).

Amazon Redshift and Massively Parellel Processing的更多相关文章

  1. Amazon Redshift数据库

    Amazon Redshift介绍 Amazon Redshift是一种可轻松扩展的完全托管型PB级数据仓库,它通过使用列存储技术和并行化多个节点的查询来提供快速的查询性能,使您能够更高效的分析现有数 ...

  2. Power BI连接至Amazon Redshift

    一直在使用Power BI连接至MongoDB中,但效果一直不是太理想,今天使用另一种方法,将MongoDB中的数据通过Azure Data Factory转入Amazon Redshift中,而在P ...

  3. amazon redshift 分析型数据库特点——本质还是列存储

    Amazon Redshift 是一种快速且完全托管的 PB 级数据仓库,使您可以使用现有的商业智能工具经济高效地轻松分析您的所有数据.从最低 0.25 USD 每小时 (不承担任何义务) 直到每年每 ...

  4. Amazon Redshift数据迁移到MaxCompute

    Amazon Redshift数据迁移到MaxCompute Amazon Redshift 中的数据迁移到MaxCompute中经常需要先卸载到S3中,再到阿里云对象存储OSS中,大数据计算服务Ma ...

  5. POWER BI 基于 ODBC 数据源的配置刷新-以Amazon Redshift为例

    POWER BI 基于 ODBC 数据源的配置刷新-以Amazon Redshift为例 Powerbi 有多种数据源连接,可以使用它们连接到不同数据源. 如果在 Power BI Desktop 的 ...

  6. Amazon Redshift and the Case for Simpler Data Warehouses

    Redshift是Amazon一个商业产品上的进化 但并不是技术的进化,他使用的无非都是传统数仓领域的技术 如果说创新,就是大量使用Amazon本身的云服务的云原生架构,大大提升的产品的迭代速度,可维 ...

  7. Python 如何连接并操作 Aws 上 PB 级云数据仓库 Redshift

    Python 如何连接并操作 Aws 上 PB 级云数据仓库 Redshift 一.简介 Amazon Redshift 是一个快速.可扩展的数据仓库,可以简单.经济高效地分析数据仓库和数据湖中的所有 ...

  8. Qwiklab'实验-DynamoDB, Redshift, Elasticsearch'

    title: AWS之Qwiklab subtitle: 4. Qwiklab'实验-Amazon DynamoDB, Amazon Redshift, Elasticsearch Service' ...

  9. Massively parallel supercomputer

    A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures ba ...

随机推荐

  1. Android Call requires API level 11 (current min is 8)的解决方案

    [错误描述] 在用Eclipse开发过程中,为了兼容Android2.2和4.0以上版本,我在使用Notification类时做了2个版本的代码,代码根据系统版本不同执行相应模块,结果,等我输完代码, ...

  2. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

  3. jquery 弹出框 showDialog.js具体用法

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABWwAAAImCAIAAABID1T7AAAgAElEQVR4nO3d329c52Hgff1HvPCNLw

  4. Javascript常用正则表达式

    一.校验数字的表达式 数字:^[0-9]*$ n位的数字:^\d{n}$ 至少n位的数字:^\d{n,}$ m-n位的数字:^\d{m,n}$ 零和非零开头的数字:^(0|[1-9][0-9]*)$ ...

  5. eclipse在ubuntu13.04下崩溃crash

    错误信息: # # A fatal error has been detected by the Java Runtime Environment: # # SIGSEGV (0xb) at pc=0 ...

  6. [android开发之内容更新类APP]二、这几日的结果

    android教程即将開始 话说这开了blog之后,就一直在试用自己的app,发现.TM的真的非常不爽,不好用,好吧.本来打算放弃了.只是看到手机里还有还有一个坑,干脆又一次做一个吧. 原来的神回复A ...

  7. CSS彻底研究(2)

    Github pages 博文 一 . CSS盒模型 1.盒子的结构 margin-border-padding结构 + 内容content 组成盒模型 注意 width,height 取的是cont ...

  8. 1.jdk、Tomcat、solr的安装和配置

    1.jdk安装和配置 1)根据电脑类型,到官网下载相应的jdk版本 2)双击jdk-8u5-windows-x64.exe安装包,一直点下一步就可以了,注意记住jdk和jre的安装目录. 3)环境变量 ...

  9. mvc原理和mvc模式的优缺点

    一.mvc原理   mvc是一种程序开发设计模式,它实现了显示模块与功能模块的分离.提高了程序的可维护性.可移植性.可扩展性与可重用性,降低了程序的开发难度.它主要分模型.视图.控制器三层. 1.模型 ...

  10. iOS-设计模式之Block

    Block是代码块, Block定义 返回值 (^ 块名)(参数1,参数2…); 在定义Block的时候可以使用typedef 重命名一下. typedef void(^blockName)(NSSt ...