Amazon Redshift and Massively Parellel Processing
Today, Yelp held a tech talk in Columbia University about the data warehouse adopted by Yelp.
Yelp used Amazon Redshift as data warehouse.
There are several features for Redshift:
1. Massively Parellel Processing
2. SQL access
3. Column-based Datastore
Benefits are:
1. Data is structured, accessible and well documented.
2. Architecture allows for easy extensibility and sharing across teams.
3. Allows use of entire SQL-compatible tool ecosystem.
Details:
Massively Parellel Processing (MMP)
Traditional BigData always uses Hadoop + MapReduce. MapReduce's native control mechanism is Java code (to implement the Map and Reduce logic), whereas MPP products are queried with SQL(Structural Query Language). You can refer detail here.
Below is the structure for implementing MMP.

Similarly, Data is distributed across each segment database to achieve data and processing parallelism. This is achieved by creating a database table with DISTRIBUTED BY clause. By using this clause data is automatically distributed across segment databases. (referrence: Introduction to MMP)
Typical query sentence in MMP

Column-based Datastore
Enables sparse table definitions
Enables compact storage
Improve scanning/filtering
(Benefits: wiki)
Column-based Datastore
- Column-oriented organizations are more efficient when an aggregate needs to be computed over many rows but only for a notably smaller subset of all columns of data, because reading that smaller subset of data can be faster than reading all data.
- Column-oriented organizations are more efficient when new values of a column are supplied for all rows at once, because that column data can be written efficiently and replace old column data without touching any other columns for the rows.
- Row-oriented organizations are more efficient when many columns of a single row are required at the same time, and when row-size is relatively small, as the entire row can be retrieved with a single disk seek.
- Row-oriented organizations are more efficient when writing a new row if all of the row data is supplied at the same time, as the entire row can be written with a single disk seek.
In practice, row-oriented storage layouts are well-suited for OLTP-like workloads which are more heavily loaded with interactive transactions. Column-oriented storage layouts are well-suited for OLAP-like workloads (e.g., data warehouses) which typically involve a smaller number of highly complex queries over all data (possibly terabytes).
Amazon Redshift and Massively Parellel Processing的更多相关文章
- Amazon Redshift数据库
Amazon Redshift介绍 Amazon Redshift是一种可轻松扩展的完全托管型PB级数据仓库,它通过使用列存储技术和并行化多个节点的查询来提供快速的查询性能,使您能够更高效的分析现有数 ...
- Power BI连接至Amazon Redshift
一直在使用Power BI连接至MongoDB中,但效果一直不是太理想,今天使用另一种方法,将MongoDB中的数据通过Azure Data Factory转入Amazon Redshift中,而在P ...
- amazon redshift 分析型数据库特点——本质还是列存储
Amazon Redshift 是一种快速且完全托管的 PB 级数据仓库,使您可以使用现有的商业智能工具经济高效地轻松分析您的所有数据.从最低 0.25 USD 每小时 (不承担任何义务) 直到每年每 ...
- Amazon Redshift数据迁移到MaxCompute
Amazon Redshift数据迁移到MaxCompute Amazon Redshift 中的数据迁移到MaxCompute中经常需要先卸载到S3中,再到阿里云对象存储OSS中,大数据计算服务Ma ...
- POWER BI 基于 ODBC 数据源的配置刷新-以Amazon Redshift为例
POWER BI 基于 ODBC 数据源的配置刷新-以Amazon Redshift为例 Powerbi 有多种数据源连接,可以使用它们连接到不同数据源. 如果在 Power BI Desktop 的 ...
- Amazon Redshift and the Case for Simpler Data Warehouses
Redshift是Amazon一个商业产品上的进化 但并不是技术的进化,他使用的无非都是传统数仓领域的技术 如果说创新,就是大量使用Amazon本身的云服务的云原生架构,大大提升的产品的迭代速度,可维 ...
- Python 如何连接并操作 Aws 上 PB 级云数据仓库 Redshift
Python 如何连接并操作 Aws 上 PB 级云数据仓库 Redshift 一.简介 Amazon Redshift 是一个快速.可扩展的数据仓库,可以简单.经济高效地分析数据仓库和数据湖中的所有 ...
- Qwiklab'实验-DynamoDB, Redshift, Elasticsearch'
title: AWS之Qwiklab subtitle: 4. Qwiklab'实验-Amazon DynamoDB, Amazon Redshift, Elasticsearch Service' ...
- Massively parallel supercomputer
A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures ba ...
随机推荐
- Pythoner | 你像从前一样的Python学习笔记
Pythoner | 你像从前一样的Python学习笔记 Pythoner
- JSTL解析——007——fmt标签库02
各位亲们,近期事情比较多,没更新,come on! 1.<fmt:bundle>/<fmt:message>/<fmt:param>资源国际化标签 java中使用R ...
- linux使用mysql的命令
1.连接到mysql服务器的命令 mysql -h 服务器主机地址 -u 用户名 -p 用户密码 例:mysql -h 192.168.1.1 -u root -p //指定服务器的主机地址和用户 ...
- Android学习总结——欢迎页和导航页的实现
activity_welcome.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayo ...
- kafka与Spring的集成
准备工作 kafka版本:kafka_2.10-0.10.1.0 spring版本:spring4.3 配置文件 pom文件配置(也可以直接下载jar包) Kafka和spring集成的支持类库,sp ...
- 一步一步学数据结构之n--n(Prim算法)
在这里说下最小连通网的Prim算法: 而Kruskal算法,http://blog.csdn.net/nethanhan/article/details/10050735有介绍,大家可以去看下! Pr ...
- Hook linux 网络封包
要注册一个hook函数需要用到nf_register_hook()或者nf_register_hooks()系统API和一个struct nf_hook_ops{}类型的结构体对象 一个简单的demo ...
- iOS开发CoreAnimation解读之一——初识CoreAnimation核心动画编程
iOS开发CoreAnimation解读之一——初识CoreAnimation核心动画编程 一.引言 二.初识CoreAnimation 三.锚点对几何属性的影响 四.Layer与View之间的关系 ...
- TCP三次握手的过程
三次握手 下图就是wireshark抓包工具抓获的TCP连接建立的三次握手过程: http://www.cnblogs.com/hnrainll/archive/2011/10/14/2212415. ...
- NuGet学习笔记(3)——搭建属于自己的NuGet服务器(转)
在上一篇NuGet学习笔记(2) 使用图形化界面打包自己的类库 中讲解了如何打包自己的类库,接下来进行最重要的一步,从零开始搭建属于自己的NuGet服务器,诚然园子里及其它很多地方已经有完全写好的Nu ...