Today, Yelp held a tech talk in Columbia University about the data warehouse adopted by Yelp.

Yelp used Amazon Redshift as data warehouse.

There are several features for Redshift:

1. Massively Parellel Processing

2. SQL access

3. Column-based Datastore

Benefits are:

1. Data is structured, accessible and well documented.
2. Architecture allows for easy extensibility and sharing across teams.
3. Allows use of entire SQL-compatible tool ecosystem.

Details:

Massively Parellel Processing (MMP)

Traditional BigData always uses Hadoop + MapReduce. MapReduce's native control mechanism is Java code (to implement the Map and Reduce logic), whereas MPP products are queried with SQL(Structural Query Language). You can refer detail here.

Below is the structure for implementing MMP.

Similarly, Data is distributed across each segment database to achieve data and processing parallelism. This is achieved by creating a database table with DISTRIBUTED BY clause. By using this clause data is automatically distributed across segment databases. (referrence: Introduction to MMP)

Typical query sentence in MMP

Column-based Datastore

Enables sparse table definitions
Enables compact storage
Improve scanning/filtering

(Benefits: wiki)

Column-based Datastore

  1. Column-oriented organizations are more efficient when an aggregate needs to be computed over many rows but only for a notably smaller subset of all columns of data, because reading that smaller subset of data can be faster than reading all data.
  2. Column-oriented organizations are more efficient when new values of a column are supplied for all rows at once, because that column data can be written efficiently and replace old column data without touching any other columns for the rows.
  3. Row-oriented organizations are more efficient when many columns of a single row are required at the same time, and when row-size is relatively small, as the entire row can be retrieved with a single disk seek.
  4. Row-oriented organizations are more efficient when writing a new row if all of the row data is supplied at the same time, as the entire row can be written with a single disk seek.

In practice, row-oriented storage layouts are well-suited for OLTP-like workloads which are more heavily loaded with interactive transactions. Column-oriented storage layouts are well-suited for OLAP-like workloads (e.g., data warehouses) which typically involve a smaller number of highly complex queries over all data (possibly terabytes).

Amazon Redshift and Massively Parellel Processing的更多相关文章

  1. Amazon Redshift数据库

    Amazon Redshift介绍 Amazon Redshift是一种可轻松扩展的完全托管型PB级数据仓库,它通过使用列存储技术和并行化多个节点的查询来提供快速的查询性能,使您能够更高效的分析现有数 ...

  2. Power BI连接至Amazon Redshift

    一直在使用Power BI连接至MongoDB中,但效果一直不是太理想,今天使用另一种方法,将MongoDB中的数据通过Azure Data Factory转入Amazon Redshift中,而在P ...

  3. amazon redshift 分析型数据库特点——本质还是列存储

    Amazon Redshift 是一种快速且完全托管的 PB 级数据仓库,使您可以使用现有的商业智能工具经济高效地轻松分析您的所有数据.从最低 0.25 USD 每小时 (不承担任何义务) 直到每年每 ...

  4. Amazon Redshift数据迁移到MaxCompute

    Amazon Redshift数据迁移到MaxCompute Amazon Redshift 中的数据迁移到MaxCompute中经常需要先卸载到S3中,再到阿里云对象存储OSS中,大数据计算服务Ma ...

  5. POWER BI 基于 ODBC 数据源的配置刷新-以Amazon Redshift为例

    POWER BI 基于 ODBC 数据源的配置刷新-以Amazon Redshift为例 Powerbi 有多种数据源连接,可以使用它们连接到不同数据源. 如果在 Power BI Desktop 的 ...

  6. Amazon Redshift and the Case for Simpler Data Warehouses

    Redshift是Amazon一个商业产品上的进化 但并不是技术的进化,他使用的无非都是传统数仓领域的技术 如果说创新,就是大量使用Amazon本身的云服务的云原生架构,大大提升的产品的迭代速度,可维 ...

  7. Python 如何连接并操作 Aws 上 PB 级云数据仓库 Redshift

    Python 如何连接并操作 Aws 上 PB 级云数据仓库 Redshift 一.简介 Amazon Redshift 是一个快速.可扩展的数据仓库,可以简单.经济高效地分析数据仓库和数据湖中的所有 ...

  8. Qwiklab'实验-DynamoDB, Redshift, Elasticsearch'

    title: AWS之Qwiklab subtitle: 4. Qwiklab'实验-Amazon DynamoDB, Amazon Redshift, Elasticsearch Service' ...

  9. Massively parallel supercomputer

    A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures ba ...

随机推荐

  1. wikioi1191 数轴染色

    题目描述 Description 在一条数轴上有N个点,分别是1-N.一开始所有的点都被染成黑色.接着 我们进行M次操作,第i次操作将[Li,Ri]这些点染成白色.请输出每个操作执行后 剩余黑色点的个 ...

  2. Smallest Rectangle Enclosing Black Pixels 解答

    Question An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. ...

  3. UVA10817--状态压缩DP

    第一次做状态压缩dp..没有思路..看书看明白的,不过看完发现汝哥的做法多算了一些东西,完全可以省去不算.. 用两个集合,s1表示恰好有一个人教的科目,s2表示至少有两个人教的科目.d(i,s1,s2 ...

  4. hdu 5033 Building (单调栈 或 暴力枚举 )

    Description Once upon a time Matt went to a small town. The town was so small and narrow that he can ...

  5. Hadoop 写SequenceFile文件 源代码

    package com.tdxx.hadoop.sequencefile; import java.io.IOException; import org.apache.hadoop.conf.Conf ...

  6. blockUI

    组件主页 主要使用到 blockUI 组件实现 将jquery和组件的JS下载到本地 然后直接就可以实现遮罩层功能 显示遮罩层:$.blockUI(); 隐藏遮罩层:$.unblockUI(); 该网 ...

  7. LR选择哪种方式录制

    LR选择哪种方式录制,有以下考虑原则: 1.基于浏览器的应用程序推荐使用HTML-basic script方式录制 2.不是基于浏览器的应用程序推荐使用URL-basic script方式录制 3.如 ...

  8. input输入字母自动大小写转换

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  9. Webstrom 使用过程中遇到的问题以及解决方案

    作为一个前端开发,我用过webstorm和sublime两个编辑器.sublime小巧轻便,不耗内存.但是webstorm具有以下特点,让我难以舍弃. webstorm优点 点击一个函数名,它会跳到函 ...

  10. eclipse中多个工程编译到同一个目录下

    1.点击link source  2.选择Java(ps:Java文件目录)或者resource(ps:配置文件目录)  3.最后结果,然后使用project中的clean进行编译,就可以把两个工程编 ...