题面

题目分析

\[\begin{split}
\sum_{i=0}^n\sum_{j=0}^iS(i,j)\cdot 2^j\cdot j!&=\sum_{j=0}^n2^j\cdot j!\sum_{i=0}^nS(i,j)\\
&=\sum_{j=0}^n2^j\cdot j!\sum_{i=0}^n\sum_{k=0}^j\frac {(-1)^k}{k!}\cdot \frac{(j-k)^i}{(j-k)!}\\
&=\sum_{j=0}^n2^j\cdot j!\sum_{k=0}^j\frac {(-1)^k}{k!}\cdot \frac{\sum\limits_{i=0}^n(j-k)^i}{(j-k)!}\\
\end{split}
\]

最终,\(\sum\limits_{i=0}^n(j-k)^i\)是等比数列求和,可以\(O(1)\)计算。

设\(g(i)=\frac{i^{n+1}-1}{(i-1)\cdot i!},g(0)=1,g(1)=n+1\),\(f(i)=\frac {(-1)^i}{i!}\)。

所以有

\[ans=\sum_{j=0}^n2^j\cdot j!\sum_{k=0}^jf(k)\cdot g(j-k)
\]

\(\sum_{k=0}^jf(k)\cdot g(j-k)\)是一个卷积,可以NTT计算。

代码实现

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
int ret=1;
while(k){
if(k&1)ret=(LL)ret*x%mod;
x=(LL)x*x%mod,k>>=1;
}
return ret;
}
int rev[N];
void NTT(int *a,int x,int K){
int n=(1<<x);
for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
if(K==-1)wn=ksm(wn,mod-2);
for(int j=0;j<n;j+=tmp){
int w=1;
for(int k=0;k<i;k++,w=(LL)w*wn%mod){
int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod,a[i+j+k]=(x-y+mod)%mod;
}
}
}
if(K==-1){
int inv=ksm(n,mod-2);
for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
}
}
int a[N],b[N],fac[N];
int main(){
int n=Getint();
fac[0]=1;for(int i=1;i<=n;i++)fac[i]=(LL)fac[i-1]*i%mod;
a[0]=1,b[0]=1,b[1]=n+1;
for(int i=1;i<=n;i++)
a[i]=(((i&1)?-1:1)*ksm(fac[i],mod-2)+mod)%mod;
for(int i=2;i<=n;i++)
b[i]=(LL)(ksm(i,n+1)+mod-1)%mod*ksm((LL)(i-1)*fac[i]%mod,mod-2)%mod; int x=ceil(log2(n<<1|1));
for(int i=0;i<(1<<x);i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
NTT(a,x,1),NTT(b,x,1);
for(int i=0;i<(1<<x);i++)a[i]=(LL)a[i]*b[i]%mod;
NTT(a,x,-1); int ans=0;
for(int i=0,t=1;i<=n;i++,t=((LL)t<<1)%mod)
ans=(ans+(LL)fac[i]*t%mod*a[i]%mod)%mod;
cout<<ans;
return 0;
}

【TJOI/HEOI2016】求和的更多相关文章

  1. 【BZOJ4555】[TJOI&HEOI2016]求和 斯特林数+NTT

    Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i ...

  2. loj2058 「TJOI / HEOI2016」求和 NTT

    loj2058 「TJOI / HEOI2016」求和 NTT 链接 loj 思路 \[S(i,j)=\frac{1}{j!}\sum\limits_{k=0}^{j}(-1)^{k}C_{j}^{k ...

  3. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  4. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  5. [HEOI2016]求和 sum

    [HEOI2016]求和 sum 标签: NTT cdq分治 多项式求逆 第二类斯特林数 Description 求\[\sum_{i=0}^n\sum_{j=0}^i S(i,j)×2^j×(j!) ...

  6. loj#2054. 「TJOI / HEOI2016」树

    题目链接 loj#2054. 「TJOI / HEOI2016」树 题解 每次标记覆盖整棵字数,子树维护对于标记深度取max dfs序+线段树维护一下 代码 #include<cstdio> ...

  7. 「TJOI / HEOI2016」字符串

    「TJOI / HEOI2016」字符串 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为 \(n\) 的字符串 \(s\),和 ...

  8. 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT

    [题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...

  9. AC日记——#2054. 「TJOI / HEOI2016」树

    #2054. 「TJOI / HEOI2016」树 思路: 线段树: 代码: #include <cstdio> #include <cstring> #include < ...

  10. AC日记——#2057. 「TJOI / HEOI2016」游戏 LOJ

    #2057. 「TJOI / HEOI2016」游戏 思路: 最大流: 代码: #include <cstdio> #include <cstring> #include &l ...

随机推荐

  1. Matplotlib_key_point

    Matplotlib官方入门教程: http://www.labri.fr/perso/nrougier/teaching/matplotlib/ 本文参考教程: http://codingpy.co ...

  2. (unicode error) 'unicodeescape' codec can't decode bytes in position 2-3: truncated \UXXXXXXXX escape 错误

    使用网页版jupyder在读取桌面文件时,刚开始我的代码是: baseball = pd.read_csv('C:\Users\TuZhiqiang\Desktop\result.csv')print ...

  3. elasticsearch 6.x 安装search guard

    前言 es之前版本一直无用户验证功能,不过官方有提供一x-pack,但是问题是付费.在es的6.3.2版本中,已经集成了x-pack,虽然es团队已经对x-pack开源,但是在该版本中如果需要使用到安 ...

  4. github gist 查看html

    gist GitHub Gist 指南 https://blog.csdn.net/yz18931904/article/details/80482166 通过修改hosts解决gist.github ...

  5. securityDemo依赖

    <dependencies> <dependency> <groupId>junit</groupId> <artifactId>junit ...

  6. MUI 自定义从底部弹出的弹出框内容

    最近做的项目都是在使用mui做手机网页,大致是下面的这种弹出效果 首先,引入 mui.css或者mui.min.css 引入 mui.min.js或者mui.js 第二步:<a href=&qu ...

  7. Linux进程基本原理

    主题进程介绍 一进程相关概念 内核的功用:进程管理.文件系统.网络功能.内存管理.驱动程序.安全功能等 在操作系统上会运行多个应用程序,应用程序分配多大的内存都由内核实现 程序文件 程序和进程的关系 ...

  8. python--MySql(外键约束、多表查询(*****))

    两张表之间的关系: 一对一(两张表可以合并成一张表) 一对一用的比较少,多对一对外键设置unique约束可以实现一对一 一对多(例如:每一个班主任会对应多个学生 , 而每个学生只能对应一个班主任) 多 ...

  9. cf round#598 CDEF

    C:模拟:未跳到目的地之前先贪心放板子,能到达目的地后紧贴着放板子 先判能不能跳到目的地,能跳到再考虑是否需要将后面的板子往前移动 #include<bits/stdc++.h> usin ...

  10. Cisco基础(五):配置静态NAT、配置端口映射、配置动态NAT、PAT配置、办公区Internet的访问

    一.配置静态NAT 目标: 随着接入Internet的计算机数量的不断猛增,IP地址资源也就愈加显得捉襟见肘.事实上,除了中国教育和科研计算机网(CERNET)外,一般用户几乎申请不到整段的C类IP地 ...