【TJOI/HEOI2016】求和
题面

题目分析
\sum_{i=0}^n\sum_{j=0}^iS(i,j)\cdot 2^j\cdot j!&=\sum_{j=0}^n2^j\cdot j!\sum_{i=0}^nS(i,j)\\
&=\sum_{j=0}^n2^j\cdot j!\sum_{i=0}^n\sum_{k=0}^j\frac {(-1)^k}{k!}\cdot \frac{(j-k)^i}{(j-k)!}\\
&=\sum_{j=0}^n2^j\cdot j!\sum_{k=0}^j\frac {(-1)^k}{k!}\cdot \frac{\sum\limits_{i=0}^n(j-k)^i}{(j-k)!}\\
\end{split}
\]
最终,\(\sum\limits_{i=0}^n(j-k)^i\)是等比数列求和,可以\(O(1)\)计算。
设\(g(i)=\frac{i^{n+1}-1}{(i-1)\cdot i!},g(0)=1,g(1)=n+1\),\(f(i)=\frac {(-1)^i}{i!}\)。
所以有
\]
\(\sum_{k=0}^jf(k)\cdot g(j-k)\)是一个卷积,可以NTT计算。
代码实现
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
int ret=1;
while(k){
if(k&1)ret=(LL)ret*x%mod;
x=(LL)x*x%mod,k>>=1;
}
return ret;
}
int rev[N];
void NTT(int *a,int x,int K){
int n=(1<<x);
for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
if(K==-1)wn=ksm(wn,mod-2);
for(int j=0;j<n;j+=tmp){
int w=1;
for(int k=0;k<i;k++,w=(LL)w*wn%mod){
int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod,a[i+j+k]=(x-y+mod)%mod;
}
}
}
if(K==-1){
int inv=ksm(n,mod-2);
for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
}
}
int a[N],b[N],fac[N];
int main(){
int n=Getint();
fac[0]=1;for(int i=1;i<=n;i++)fac[i]=(LL)fac[i-1]*i%mod;
a[0]=1,b[0]=1,b[1]=n+1;
for(int i=1;i<=n;i++)
a[i]=(((i&1)?-1:1)*ksm(fac[i],mod-2)+mod)%mod;
for(int i=2;i<=n;i++)
b[i]=(LL)(ksm(i,n+1)+mod-1)%mod*ksm((LL)(i-1)*fac[i]%mod,mod-2)%mod;
int x=ceil(log2(n<<1|1));
for(int i=0;i<(1<<x);i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
NTT(a,x,1),NTT(b,x,1);
for(int i=0;i<(1<<x);i++)a[i]=(LL)a[i]*b[i]%mod;
NTT(a,x,-1);
int ans=0;
for(int i=0,t=1;i<=n;i++,t=((LL)t<<1)%mod)
ans=(ans+(LL)fac[i]*t%mod*a[i]%mod)%mod;
cout<<ans;
return 0;
}
【TJOI/HEOI2016】求和的更多相关文章
- 【BZOJ4555】[TJOI&HEOI2016]求和 斯特林数+NTT
Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i ...
- loj2058 「TJOI / HEOI2016」求和 NTT
loj2058 「TJOI / HEOI2016」求和 NTT 链接 loj 思路 \[S(i,j)=\frac{1}{j!}\sum\limits_{k=0}^{j}(-1)^{k}C_{j}^{k ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- [HEOI2016]求和 sum
[HEOI2016]求和 sum 标签: NTT cdq分治 多项式求逆 第二类斯特林数 Description 求\[\sum_{i=0}^n\sum_{j=0}^i S(i,j)×2^j×(j!) ...
- loj#2054. 「TJOI / HEOI2016」树
题目链接 loj#2054. 「TJOI / HEOI2016」树 题解 每次标记覆盖整棵字数,子树维护对于标记深度取max dfs序+线段树维护一下 代码 #include<cstdio> ...
- 「TJOI / HEOI2016」字符串
「TJOI / HEOI2016」字符串 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为 \(n\) 的字符串 \(s\),和 ...
- 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT
[题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...
- AC日记——#2054. 「TJOI / HEOI2016」树
#2054. 「TJOI / HEOI2016」树 思路: 线段树: 代码: #include <cstdio> #include <cstring> #include < ...
- AC日记——#2057. 「TJOI / HEOI2016」游戏 LOJ
#2057. 「TJOI / HEOI2016」游戏 思路: 最大流: 代码: #include <cstdio> #include <cstring> #include &l ...
随机推荐
- Tomcat 配置错误界面
Tomcat发生错误时跳转到错误页面 注意 :5.0下操作需要删除掉注释语句,不然报错,原因未知 一.修改 tomcat 的配置文件 修改 tomcat 的配置文件,当页面发生错误时跳转到指定的页面, ...
- 当input中的内容改变时触发的事件
当input中的内容改变时触发的事件 1 $('#id').bind('input propertychange', function() { //处理内容 } 循环js事件 $(document). ...
- 负载均衡中间件(一)Nginx高性能负载均衡器
Nginx是一款轻量级的Web服务器/反向代理服务器及电子邮件(IMAP/PO3)代理服务器,并在一个BSD协议下发行,可以在UNIX.GNU/Linux.BSD.Mac OS X.Solaris,以 ...
- C常量
C 常量 常量是固定值,在程序执行期间不会改变.这些固定的值,又叫做字面量. 常量可以是任何的基本数据类型,比如整数常量.浮点常量.字符常量,或字符串字面值,也有枚举常量. 常量就像是常规的变量,只不 ...
- URAL 1057 Amount of Degrees (数位dp)
Create a code to determine the amount of integers, lying in the set [X;Y] and being a sum of exactly ...
- [CSP-S模拟测试62]题解
A.Graph 因为点可以随便走,所以对于每个联通块,答案为边数/2向下取整. 用类似Tarjan的方式,对于每个联通块建立一棵搜索树,尽量让每一个节点的儿子两两配对,如果做不到就用上头顶的天线. # ...
- Linux桌面与命令行切换
1.首先在安装Linux的时候是选则Desktop桌面方式安装 2.切换命令 2.1快捷键:Ctrl+Alt+F1 切换到桌面模式 Ctrl+Alt+F3 切换到命令行模式
- VS2014:"64位调试操作花费的时间比预期要长",无法运行调试解决办法
解决步骤: 右键管理员运行命令提示符,输入IISRESERT,重启IIS即可
- 国内网络安装ubuntu软件慢的解决方法
以安装scikit-image为例: pip3 install scikit-image==0.13.0 -i https://pypi.tuna.tsinghua.edu.cn/simple 或者 ...
- ASP.NET Core学习——6
依赖注入DI ASP.NET Core的底层设计支持和使用依赖注入.ASP.NET Core应用程序可以利用内置的框架服务将它们注入到启动类的方法中,并且应用程序服务能够配置注入. 1.什么是依赖注入 ...