spark MLlib 概念 1:相关系数( PPMCC or PCC or Pearson's r皮尔森相关系数) and Spearman's correlation(史匹曼等级相关系数)
皮尔森相关系数定义: 协方差与标准差乘积的商。
Pearson's correlation coefficient when applied to a population is commonly represented by the Greek letter ρ (rho) and may be referred to as the population correlation coefficient or the population Pearson correlation coefficient. The formula for ρ is:
where, is the covariance,
is the standard deviation of
,
is the mean of
, and
is the expectation.
适合计算机运行的公式:
Alternative formulae for the sample Pearson correlation coefficient are also available:
The above formula suggests a convenient single-pass algorithm for calculating sample correlations, but, depending on the numbers involved, it can sometimes benumerically unstable.
Spearman's rank correlation coefficient
分析两个变量的一致性程度。
定义:
For a sample of size n, the n raw scores
are converted to ranks
, and ρ is computed from:

where
, is the difference between ranks
示例[编辑]
在此例中,我们要使用下表所给出的原始数据计算一个人的 智商和其每周花在 电视上的小时数的相关性。
智商, 
每周花在电视上的小时数, 
106
7
86
0
100
27
101
50
99
28
103
29
97
20
113
12
112
6
110
17
首先,我们必须根据以下步骤计算出
,如下表所示。
- 排列第一列数据 (
)。 创建新列
并赋以等级值 1,2,3,...n。
- 然后,排列第二列数据 (
). 创建第四列
并相似地赋以等级值 1,2,3,...n。
- 创建第五列
保存两个等级列的差值 (
和
).
- 创建最后一列
保存
的平方.
智商, 
每周花在电视上的小时数, 
等级 
等级 


86
0
1
1
0
0
97
20
2
6
−4
16
99
28
3
8
−5
25
100
27
4
7
−3
9
101
50
5
10
−5
25
103
29
6
9
−3
9
106
7
7
3
4
16
110
17
8
5
3
9
112
6
9
2
7
49
113
12
10
4
6
36
根据
计算
。 样本容量n为 10。 将这些值带入方程

得 ρ = −0.175757575...

For a sample of size n, the n raw scores are converted to ranks
, and ρ is computed from:
where , is the difference between ranks
示例[编辑]
在此例中,我们要使用下表所给出的原始数据计算一个人的 智商和其每周花在 电视上的小时数的相关性。
智商, ![]() |
每周花在电视上的小时数, ![]() |
106 | 7 |
86 | 0 |
100 | 27 |
101 | 50 |
99 | 28 |
103 | 29 |
97 | 20 |
113 | 12 |
112 | 6 |
110 | 17 |
首先,我们必须根据以下步骤计算出 ,如下表所示。
- 排列第一列数据 (
)。 创建新列
并赋以等级值 1,2,3,...n。
- 然后,排列第二列数据 (
). 创建第四列
并相似地赋以等级值 1,2,3,...n。
- 创建第五列
保存两个等级列的差值 (
和
).
- 创建最后一列
保存
的平方.
智商, ![]() |
每周花在电视上的小时数, ![]() |
等级 ![]() |
等级 ![]() |
![]() |
![]() |
86 | 0 | 1 | 1 | 0 | 0 |
97 | 20 | 2 | 6 | −4 | 16 |
99 | 28 | 3 | 8 | −5 | 25 |
100 | 27 | 4 | 7 | −3 | 9 |
101 | 50 | 5 | 10 | −5 | 25 |
103 | 29 | 6 | 9 | −3 | 9 |
106 | 7 | 7 | 3 | 4 | 16 |
110 | 17 | 8 | 5 | 3 | 9 |
112 | 6 | 9 | 2 | 7 | 49 |
113 | 12 | 10 | 4 | 6 | 36 |
根据 计算
。 样本容量n为 10。 将这些值带入方程
得 ρ = −0.175757575...

spark MLlib 概念 1:相关系数( PPMCC or PCC or Pearson's r皮尔森相关系数) and Spearman's correlation(史匹曼等级相关系数)的更多相关文章
- spark MLlib 概念 5: 余弦相似度(Cosine similarity)
概述: 余弦相似度 是对两个向量相似度的描述,表现为两个向量的夹角的余弦值.当方向相同时(调度为0),余弦值为1,标识强相关:当相互垂直时(在线性代数里,两个维度垂直意味着他们相互独立),余弦值为0, ...
- spark MLlib 概念 6:ALS(Alternating Least Squares) or (ALS-WR)
Large-scale Parallel Collaborative Filtering for the Netflix Prize http://www.hpl.hp.com/personal/Ro ...
- spark MLlib 概念 4: 协同过滤(CF)
1. 定义 协同过滤(Collaborative Filtering)有狭义和广义两种意义: 广义协同过滤:对来源不同的数据,根据他们的共同点做过滤处理. Collaborative filterin ...
- spark MLlib 概念 3: 卡方分布(chi-squared distribution)
数学定义[编辑] 若k个随机变量.--.是相互独立,符合标准正态分布的随机变量(数学期望为0.方差为1),则随机变量Z的平方和 被称为服从自由度为 k 的卡方分布,记作 Definition[edit ...
- spark MLlib 概念 2:Stratified sampling 层次抽样
定义: In statistical surveys, when subpopulations within an overall population vary, it is advantageou ...
- Spark Mllib里的如何对单个数据集用斯皮尔曼计算相关系数
不多说,直接上干货! import org.apache.spark.mllib.stat.Statistics 具体,见 Spark Mllib机器学习实战的第4章 Mllib基本数据类型和Mlli ...
- Spark Mllib里的如何对两组数据用斯皮尔曼计算相关系数
不多说,直接上干货! import org.apache.spark.mllib.stat.Statistics 具体,见 Spark Mllib机器学习实战的第4章 Mllib基本数据类型和Mlli ...
- Spark Mllib里的如何对两组数据用皮尔逊计算相关系数
不多说,直接上干货! import org.apache.spark.mllib.stat.Statistics 具体,见 Spark Mllib机器学习实战的第4章 Mllib基本数据类型和Mlli ...
- Spark Mllib里的分布式矩阵(行矩阵、带有行索引的行矩阵、坐标矩阵和块矩阵概念、构成)(图文详解)
不多说,直接上干货! Distributed matrix : 分布式矩阵 一般能采用分布式矩阵,说明这数据存储下来,量还是有一定的.在Spark Mllib里,提供了四种分布式矩阵存储形式,均由支 ...
随机推荐
- Get MySQL这5个优化技巧
一个成熟的数据库架构并不是一开始设计就具备高可用.高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善.这篇文章主要谈谈MySQL数据库在发展周期中所面临的问题及优化方案,暂且抛开前端应用不说,大 ...
- 【Activiti】为每一个流程绑定相应的业务对象的2种方法
方式1: 在保存每一个流程实例时,设置多个流程变量,通过多个流程变量的组合来过滤筛选符合该组合条件的流程实例,以后在需要查询对应业务对象所对应的流程实例时,只需查询包含该流程变量的值的流程实例即可. ...
- 阿里云服务器配置https
第一步 在阿里云控制台找到申请ssl证书的地址(我申请的是阿里云免费的证书,申请完要等申请通过,可能要等待一两天) 第二步下载ssl nginx版本的证书 第三步上传证书(包含.key, .pem这两 ...
- k-means 非监督学习聚类算法
非监督学习 非监督学习没有历史样本数据和标签,直接对数据分析或得结果. k-means 使用 >>> from sklearn.cluster import KMeans >& ...
- IIS7发布asp.net mvc提示404
之前服务器用的都是2003Server的服务器,发布mvc项目都没问题,今天换了一台机器,系统为Windows Server2008 R2 64位的发布mvc项目后就提示: 百度看到好多人说在web ...
- 生成大量插入语句,并将语句写入txt文件中
import java.io.*; /** * Created by czz on 2019/9/23. */ public class TTest { /** * 生成大量插入语句,并将语句写入tx ...
- Codeforces Round #581 (Div. 2)A BowWow and the Timetable (思维)
A. BowWow and the Timetable time limit per test1 second memory limit per test256 megabytes inputstan ...
- oracle order by 自定义
我们通常需要根据客户需求对于查询出来的结果给客户提供自定义的排序方式,那么我们通常sql需要实现方式都有哪些,参考更多资料总结如下(不完善的和错误望大家指出): 一.如果我们只是对于在某个程序中的应用 ...
- RobotFramework常见语法
https://blog.csdn.net/yu1014745867/article/details/79324732 常用关键字* Settings * Library Selenium2Libra ...
- Harbor ($docker login) Error saving credentials
$ sudo apt-get install $ sudo apt-get install gnupg2 pass 问题解决!