传送门

Description

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Example 1:

nums1 = [1, 3]
nums2 = [2] The median is 2.0

Example 2:

nums1 = [1, 2]
nums2 = [3, 4] The median is (2 + 3)/2 = 2.5

思路

题意:给定两个有序数组,在log级别的复杂度下,求得这两个数组中所有元素的中间值

题解:转换为求第k大的数。

假设A和B的元素个数都大于k/2,我们将A的第k/2个元素(即A[k/2-1])和B的第k/2个元素(即B[k/2-1])进行比较,有以下三种情况(为了简化这里先假设k为偶数,所得到的结论对于k是奇数也是成立的):

  • A[k/2-1] == B[k/2-1]
  • A[k/2-1] > B[k/2-1]
  • A[k/2-1] < B[k/2-1]

如果A[k/2-1] == B[k/2-1],意味着A[0]到A[k/2-1]的肯定在A∪B的top k元素的范围内,换句话说,A[k/2-1]不可能大于A∪B的第k大元素。

因此,我们可以放心的删除A数组的这k/2个元素。

同理,当A[k/2-1] > B[k/2-1]时,可以删除B数组的k/2个元素。

当A[k/2-1] == B[k/2-1]时,说明找到了第k大的元素,直接返回A[k/2-1]或B[k/2-1]即可。

因此,我们可以写一个递归函数。那么函数什么时候应该终止呢?

  • 当A或B是空时,直接返回B[k/2-1]或A[k/2-1];
  • 当k = 1时,返回min(A[0],B[0]);
  • 当A[k/2-1] ==B[k/2-1]时,返回A[k/2-1]或B[k/2-1]
 
C++:
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int len1 = nums1.size(),len2 = nums2.size();
int len = len1 + len2;
if (len & ){
return findKth(nums1,nums2,len / + );
} else{
return (findKth(nums1,nums2,len / ) + findKth(nums1,nums2,len / + ))/;
}
} double findKth(vector<int> nums1,vector<int> nums2,int k){
int len1 = nums1.size(),len2 = nums2.size();
if (len1 > len2) return findKth(nums2,nums1,k);
if (len1 == ) return nums2[k - ];
if (k == ) return min(nums1[],nums2[]);
int a = min(k / ,len1),b = k - a;
if (nums1[a - ] < nums2[b - ])
return findKth(vector<int>(nums1.begin() + a,nums1.end()),nums2,k - a);
else if (nums1[a - ] > nums2[b - ])
return findKth(nums1,vector<int>(nums2.begin() + b,nums2.end()),k - b);
else return nums1[a - ];
}
};

Java:

public class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int len = nums1.length + nums2.length;
if ((len & ) == ){
return findKth(nums1,nums2,len / + );
}
else{
return (findKth(nums1,nums2,len / ) + findKth(nums1,nums2,len / + )) / ;
}
} public double findKth(int[] nums1, int[] nums2,int k){
int len1 = nums1.length,len2 = nums2.length;
if (len1 > len2) return findKth(nums2,nums1,k);
if (len1 == ) return nums2[k - ];
if (k == ) return Math.min(nums1[],nums2[]);
int a = Math.min(k / ,len1),b = k - a;
if (nums1[a - ] < nums2[b - ]) return findKth(Arrays.copyOfRange(nums1, a, len1),nums2,k - a);
else if (nums1[a - ] > nums2[b - ]) return findKth(nums1,Arrays.copyOfRange(nums2,b,len2), k - b);
else return nums1[a - ];
}
}

[LeetCode] 4. Median of Two Sorted Arrays(想法题/求第k小的数)的更多相关文章

  1. 【算法之美】求解两个有序数组的中位数 — leetcode 4. Median of Two Sorted Arrays

    一道非常经典的题目,Median of Two Sorted Arrays.(PS:leetcode 我已经做了 190 道,欢迎围观全部题解 https://github.com/hanzichi/ ...

  2. LeetCode(3) || Median of Two Sorted Arrays

    LeetCode(3) || Median of Two Sorted Arrays 题记 之前做了3题,感觉难度一般,没想到突然来了这道比较难的,星期六花了一天的时间才做完,可见以前基础太差了. 题 ...

  3. 【leetcode】Median of Two Sorted Arrays

    题目简述: There are two sorted arrays A and B of size m and n respectively. Find the median of the two s ...

  4. LeetCode 4 Median of Two Sorted Arrays (两个数组的mid值)

    题目来源:https://leetcode.com/problems/median-of-two-sorted-arrays/ There are two sorted arrays nums1 an ...

  5. leetcode之 median of two sorted arrays

    这是我做的第二个leetcode题目,一开始以为和第一个一样很简单,但是做的过程中才发现这个题目非常难,给人一种“刚上战场就踩上地雷挂掉了”的感觉.后来搜了一下leetcode的难度分布表(leetc ...

  6. [LeetCode] 4. Median of Two Sorted Arrays ☆☆☆☆☆

    There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...

  7. Leetcode 4. Median of Two Sorted Arrays(二分)

    4. Median of Two Sorted Arrays 题目链接:https://leetcode.com/problems/median-of-two-sorted-arrays/ Descr ...

  8. LeetCode题解-----Median of Two Sorted Arrays

    题目描述: There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of t ...

  9. Leetcode 解题 Median of Two sorted arrays

    题目:there are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the ...

随机推荐

  1. Codeforces 429E(欧拉回路)

    题面 传送门 题目大意: 有n条线段,每条线段染红色或蓝色,使得数轴上每个点被红色线段覆盖的次数与被蓝色线段覆盖数差的绝对值小于等于1.输出染色方案. 分析 题意其实可以这样理解: 一段初始全为0 的 ...

  2. Could not load file or assembly system.data.sqlite.dll or one for it's depedencies

    最近做一个winform项目,因为数据库用的表很少,所以用的是轻量级数据库sqlite.sqlite的优点很多,但是他要分两个版本,32位或者64位,不能同时兼容. 我遇到的问题是,我在开发端用的是. ...

  3. python基础--4 元祖

    #元组,元素不可被修改,不能被增加或者删除 #tuple,有序 tu=(11,22,33,44,55,33) #count 获取指定元素在元祖中出现的次数 print(tu.count(33)) #i ...

  4. 【转】SPI FLASH与NOR FLASH的区别 详解SPI FLASH与NOR FLASH的不一样

    转自:http://m.elecfans.com/article/778203.html 本文主要是关于SPI FLASH与NOR FLASH的相关介绍,并着重对SPI FLASH与NOR FLASH ...

  5. 基于Redis做内存管理

    1 Redis存储机制: redis存储的数据类型包括,String,Hash,List,Set,Sorted Set,它内部使用一个redisObject对象来表示所有的key和value,这个对象 ...

  6. 理解Promise (3)

    在promise  的then  中我们不仅有 成功状态 失败状态,可能还有等待状态,所以我们要对等待状态进行处理 function Promise(executor) { let self = th ...

  7. pypi 清华镜像使用帮助

    清华镜像 地址 https://mirrors.tuna.tsinghua.edu.cn/help/pypi/ 临时使用 pip install -i https://pypi.tuna.tsingh ...

  8. JS自定义 Map

    <script>function HashMap(){this.map = {};}HashMap.prototype = { put : function(key, value){ th ...

  9. Linux内核设计与实现 总结笔记(第三章)进程

    进程管理 进程:处于执行期的程序. 线程:在进程中活动的对象 虚拟机制 虚拟处理器:多个进程分享一个处理器 虚拟内存:多个线程共享虚拟内存 一.进程描述符和任务结构 进程存放在双向循环链表中(队列), ...

  10. [CF959F]Mahmoud and Ehab and yet another xor task题解

    搞n个线性基,然后每次在上一次的基础上插入读入的数,前缀和线性基,或者说珂持久化线性基. 然后一个num数组记录当时线性基里有多少数 然后每次前缀操作一下就珂以了 代码 #include <cs ...