题目:https://www.acwing.com/problem/content/233/

题意:给你n个不同的数,让你选取一个四元组,gcd为1,让你求这样的四元组数量是多少

思路:我们单独直接去算肯定不行,正难反易,我们可以用总的减去其他gcd不是1的,也就是四个数同时有一个相同且不是1的因子,然后我们按gcd值分组

但是中间有很多分组其实有重复的值,比如  2,3  那么 6就是他们重复的,这个题不能n^2过,我们只能拆每个数的因子,然后用这些因子构造出其他与当前

数构造出不是1因子的个数

#include<bits/stdc++.h>
#define ll long long
#define mod 1000000007
#define maxn 100005
using namespace std;
ll n,a[maxn],cnt;
int vis[maxn];
int flag[maxn];
ll prime[maxn];
ll C(ll n,ll m){
return n*(n-)*(n-)*(n-)/;
}
void make(ll x){
cnt=;
for(int i=;i*i<=x;i++){
if(x%i==){
prime[cnt++]=i;
while(x%i==) x/=i;
}
}
if(x>) prime[cnt++]=x;
for(int i=;i<(<<cnt);i++){
ll cur=;
ll num=;
for(int j=;(i>>j)>;j++){
if((i>>j)&){
num++;
cur*=prime[j];
}
}
vis[cur]++;
flag[cur]=num;
}
}
int main()
{
while(scanf("%lld",&n)!=EOF){
memset(vis,,sizeof(vis));
memset(flag,,sizeof(flag));
for(int i=;i<n;i++){
scanf("%lld",&a[i]);
make(a[i]);
}
ll sum=C(n,);
for(int i=;i<=;i++){
if(flag[i]&){
sum-=C(vis[i],);
}
else{
sum+=C(vis[i],);
}
}
printf("%lld\n",sum);
}
}

AcWing 231. 天码 (容斥)打卡的更多相关文章

  1. AcWing 214. Devu和鲜花 (容斥)打卡

    Devu有N个盒子,第i个盒子中有AiAi枝花. 同一个盒子内的花颜色相同,不同盒子内的花颜色不同. Devu要从这些盒子中选出M枝花组成一束,求共有多少种方案. 若两束花每种颜色的花的数量都相同,则 ...

  2. 【BZOJ2339】卡农(递推,容斥)

    [BZOJ2339]卡农(递推,容斥) 题面 BZOJ 题解 先简化一下题意: 在\([1,2^n-1]\)中选择不重复的\(m\)个数,使得他们异或和为\(0\)的方案数. 我们设\(f[i]\)表 ...

  3. [SPOJ] DIVCNT2 - Counting Divisors (square) (平方的约数个数前缀和 容斥 卡常)

    题目 vjudge URL:Counting Divisors (square) Let σ0(n)\sigma_0(n)σ0​(n) be the number of positive diviso ...

  4. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  5. hdu 5664 Lady CA and the graph(树的点分治+容斥)

    题意: 给你一个有n个点的树,给定根,叫你找第k大的特殊链 .特殊的链的定义:u,v之间的路径,经过题给的根节点. 题解:(来自BC官方题解) 对于求第k大的问题,我们可以通过在外层套一个二分,将其转 ...

  6. min-max容斥学习笔记

    min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{ ...

  7. BZOJ4671 异或图(容斥+线性基)

    题意 定义两个结点数相同的图 \(G_1\) 与图 \(G_2\) 的异或为一个新的图 \(G\) ,其中如果 \((u, v)\) 在 \(G_1\) 与 \(G_2\) 中的出现次数之和为 \(1 ...

  8. LOJ#6503.「雅礼集训 2018 Day4」Magic[容斥+NTT+启发式合并]

    题意 \(n\) 张卡牌 \(m\) 种颜色,询问有多少种本质不同的序列满足相邻颜色相同的位置数量等于 \(k\). 分析 首先本质不同不好直接处理,可以将同种颜色的卡牌看作是不相同的,求出答案后除以 ...

  9. [CF1086E]Beautiful Matrix(容斥+DP+树状数组)

    给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...

随机推荐

  1. HDU 6034 Balala Power! —— Multi-University Training 1

    Talented Mr.Tang has nn strings consisting of only lower case characters. He wants to charge them wi ...

  2. CocoaPods中pod search报错的解决办法

    pod search报错的原因: 每次使用pod search命令的使用会在该目录下生成一个search_index.json文件,会逐渐的增大,文件达到一定大小后,ruby解析里面的json字符就会 ...

  3. vue将页面导出成pdf

    npm i jspdf-html2canvas prinOut(){ // 导出pdf let page = document.querySelector('.app-main'); // page ...

  4. ip地址与子网掩码----基础知识

    前言 IP地址有三种基本类型,由网络号的第一组数字来表示. A类地址的第一组数字为1-126. B类地址的第一组数字为128-191. C类地址的第一组数字为192-223. 注:数字0和 127不作 ...

  5. python练习题之计算字符串中所有字符得和

    第二题:计算字符串中所有数字的和1.字符串中只有小写字母和数字2.数字可能连续,也可能不连续3.连续数字要当做一个数处s='1234adg3g11's1 = "" for i in ...

  6. iphone-命令行编译之--xcodebuild

    参考 : https://www.cnblogs.com/xiaodao/archive/2012/03/01/2375609.html

  7. Windows 08 R2_创建AD DS域服务(图文详解)

    目录 目录 Active Directory概念 创建第一个AD域控制器 搭建DNS服务器 使用Windows窗口程序创建AD域控制器 AD与LDAP的关系 使用Powershell来创建ADDS域控 ...

  8. Android深度探索-卷1第四章心得体会

    这一章的和三章的git用法有联系,so,吧上一章的git基本用法搞好了再来,具体的方法就是看书上网查,这里就不做详细步骤介绍了.这章就有点意思了,是源码的下载和编译,有能看的,能自己鼓捣的,本章介绍的 ...

  9. pandas相关操作

    import pandas as pd import numpy as np ''' 一.创建df 1.定义df :传递字典 1.1每一列的名称作为键 每个键都有一个数组作为值[key:数组] 1.2 ...

  10. Spark自定义维护kafka的offset到zk

    import kafka.common.TopicAndPartition import kafka.message.MessageAndMetadata import kafka.serialize ...