THUSC2016 成绩单
题目链接:Click here
Solution:
我们设\(f[l][r][x][y]\)表示在原区间\(l\sim r\) 内还未被取走的值最大为\(x\)最小为\(y\)时的代价,这里我们只考虑区间\(l \sim r\)
我们再用\(g[l][r]\)表示将原区间$l\sim r $里的数全部取完的最小代价,则易得转移式
f[l][r][x][y]=min(f[l][r][x][y],f[l][k][x][y]+g[k+1][r])
\]
其中第一个转移表示直接从区间\(l\sim r-1\)转移过来,因为\(r\)没被取走,所以只要更新取值区间就行了
第二个转移表示枚举一个\(k\),从\(k\)断开,\(k\)之后的全部取完,\(k\)之前的取值区间为\(x\,y\),最后的答案即为\(g[1][n]\)
Code:
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,m,A,B,a[51],b[51];
int f[51][51][51][51],g[51][51];
int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;
}
signed main(){
n=read();A=read(),B=read();
memset(f,0x3f,sizeof(f));
memset(g,0x3f,sizeof(g));
for(int i=1;i<=n;i++) a[i]=read(),b[i]=a[i];
sort(b+1,b+n+1);m=unique(b+1,b+n+1)-b-1;
for(int i=1;i<=n;i++) a[i]=lower_bound(b+1,b+m+1,a[i])-b;
for(int i=1;i<=n;i++) f[i][i][a[i]][a[i]]=0,g[i][i]=A;
for(int len=1;len<=n;len++){
for(int l=1;l+len-1<=n;l++){
int r=l+len-1;
for(int x=1;x<=m;x++)
for(int y=x;y<=m;y++){
f[l][r][min(a[r],x)][max(a[r],y)]=min(f[l][r][min(a[r],x)][max(a[r],y)],f[l][r-1][x][y]);
for(int k=l;k<r;k++)
f[l][r][x][y]=min(f[l][r][x][y],f[l][k][x][y]+g[k+1][r]);
}
for(int x=1;x<=m;x++)
for(int y=x;y<=m;y++)
g[l][r]=min(g[l][r],f[l][r][x][y]+A+B*(b[y]-b[x])*(b[y]-b[x]));
}
}printf("%lld\n",g[1][n]);
return 0;
}
THUSC2016 成绩单的更多相关文章
- [BZOJ4897][THUSC2016]成绩单(DP)
4897: [Thu Summer Camp2016]成绩单 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 220 Solved: 132[Subm ...
- BZOJ4897 THUSC2016成绩单(区间dp)
拿走一个区间的代价只与最大最小值有关,并且如果最后一次拿走包含区间右端点的子序列一定不会使答案更劣,于是设f[i][j][x][y]为使i~j区间剩余最小值为x最大值为y且若有数剩余一定包含j的最小代 ...
- 【LOJ2292】[THUSC2016]成绩单(区间DP)
题目 LOJ2292 分析 比较神奇的一个区间 DP ,我看了很多题解都没看懂,大约是我比较菜罢. 先明确一下题意:abcde 取完 c 后变成 abde ,可以取 bd 这样取 c 后新增的连续段. ...
- [LOJ2292] [THUSC2016] 成绩单
题目链接 LOJ:https://loj.ac/problem/2292 洛谷:https://www.luogu.org/problemnew/show/P5336 Solution 区间\(\rm ...
- [THUSC2016]成绩单 [区间dp]
简单区间dp. 考虑 \(f_{i,j,mn,mx}\)表示 \(i,j\) 区间的最大值为 \(mx\),最小值为 \(mn\) 的最小花费,\(g_{i,j}\) 为删掉 \([i,j]\) 的最 ...
- PKUSC2018训练日程(4.18~5.30)
(总计:共66题) 4.18~4.25:19题 4.26~5.2:17题 5.3~5.9: 6题 5.10~5.16: 6题 5.17~5.23: 9题 5.24~5.30: 9题 4.18 [BZO ...
- 【THUSC2016】成绩单(bzoj4897)
$f(i,j,x,y)$ 表示区间 $[i,j]$中,第 $j$ 个数在最后一次操作中才消去,最后一次操作的最大值为 $x$,最小值为 $y$ 时的最小代价: $g(i,j)$ 表示区间 $[i,j] ...
- vue初体验:实现一个增删查改成绩单
前端变化层出不穷,去年NG火一片,今年react,vue火一片,ng硬着头皮看了几套教程,总被其中的概念绕晕,react是faceback出品,正在不断学习中,同时抽时间了解了vue,查看了vue官方 ...
- avalon实现一个简单的带增删改查的成绩单
自从angular问世,一直就有去了解学习angular,一直想用angular去做一个项目,但无奈,大ng是国外产物,ng1.2版本就只兼容到IE8,1.3后的几个版本提升到IE9,据说NG2.0更 ...
随机推荐
- Mongo数据库备份
安全访问状态下 手动在线备份: mongodump -h 127.0.0.1:27017 -u=username -p=123456 -d dbname -o /home/backups 手动恢复: ...
- Docker学习1
命名空间(Namesaoces):Linux内核提供的一种对进程资源隔离的机制,例如网络.进程.挂载点等资源. 控制组(CGroups):Linux内核提供的一种限制进程资源的机制:例如CPU.内存等 ...
- Hive 教程(八)-hiveserver2
hive 的另外一种启动方式是 hiveserver2,它是提供了一种服务,使得我们可以远程操作 hive,就像操作 mysql 一样 hiveserver1 既然有 hiveserver2,肯定有 ...
- mysql转换表的存储引擎方法
如果转换表的存储引擎,将会丢失原存储引擎的所有特性. 例如:如果将innodb转换成myisam,再转回innodb,原innodb表的的外键将丢失. 假设默认存储引擎是MyISAM转为InnoDB ...
- 关于NGINX在wnidows下面和linux下面的多站点的反向代理的配置
原创文章,转载注明出处 nginx作为一款优秀的反向代理软件,以其好用,易于搭建负载均衡的网站集群而著称,这里分别记录一下工作中用到nginx作为负载以及多站点发布的时候一些配置和注意事项 一 ng ...
- [转载]for、foreach、iterator的用法及效率区别
来源:https://www.jianshu.com/p/bbb220824c9a 1.在形式上 for的形式是 for(int i=0;i<arr.size();i++){...} forea ...
- 07 Deque的应用案例-回文检查
- 回文检测:设计程序,检测一个字符串是否为回文. - 回文:回文是一个字符串,读取首尾相同的字符,例如,radar toot madam. - 分析:该问题的解决方案将使用 deque 来存储字符串 ...
- css动画之旋转翻牌效果
1.我们先设置两个盒子大小,颜色等等,然后定位重叠在一起,最后再进行动画设置 例子如下: <style> .box { height: 300px; width: 300px; posit ...
- hashmap的hash方法源doc解读
/** * Computes key.hashCode() and spreads (XORs) higher bits of hash * to lower. Because the table u ...
- Java入门指南-03 操作符与表达式
一.赋值操作符 在 Java 语言里,等号称为赋值操作符.例:a = b + 100;注意,不要把 Java 语言理解为数学.在 Java 里,这个等号的作用是“赋值”,即右侧的值赋给左边的变量. 要 ...