线性回归linear regression(python脚本实现)
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share
理解什么是线性回归
线性回归也被称为最小二乘法回归(Linear Regression, also called Ordinary Least-Squares (OLS) Regression)。它的数学模型是这样的:
y = a+ b* x+e
其中,a被称为常数项或截距;b被称为模型的回归系数或斜率;e为误差项。a和b是模型的参数。
当然,模型的参数只能从样本数据中估计出来:
y'= a' + b'* x
我们的目标是选择合适的参数,让这一线性模型最好地拟合观测值。拟合程度越高,模型越好。
那么,接下来的问题就是,我们如何判断拟合的质量呢?
这一线性模型可以用二维平面上的一条直线来表示,被称为回归线。
模型的拟合程度越高,也即意味着样本点围绕回归线越紧密。
如何计算样本点与回归线之间的紧密程度呢?
高斯和勒让德找到的方法是:被选择的参数,应该使算出来的回归线与观测值之差的平房和最小。用函数表示为:
这被称为最小二乘法。最小二乘法的原理是这样的:当预测值和实际值距离的平方和最小时,就选定模型中的两个参数(a和b)。这一模型并不一定反映解释变量和反应变量真实的关系。但它的计算成本低;相比复杂模型更容易解释。
模型估计出来后,我们要回答的问题是:
我们的模型拟合程度如何?或者说,这个模型对因变量的解释力如何?(R2)
整个模型是否能显著预测因变量的变化?(F检验)
每个自变量是否能显著预测因变量的变化?(t检验)
首先回答第一个问题。为了评估模型的拟合程度如何,我们必须有一个可以比较的基线模型。
如果让你预测一个人的体重是多少?在没有任何额外信息的情况下,你可能会用平均值来预测,尽管会存在一定误差,但总比瞎猜好。
现在,如果你知道他的身高信息,你的预测值肯定与平均值不一样。额外信息相比平均值更能准确地预测被预测的变量的能力,就代表模型的解释力大小。
上图中,SSA代表由自变量x引起的y的离差平方和,即回归平方和,代表回归模型的解释力;SSE代表由随机因素引起的y的离差平方和,即剩余平方和,代表回归模型未能解释的部分;SST为总的离差平方和,即我们仅凭y的平均值去估计y时所产生的误差。
用模型能够解释的变异除以总的变异就是模型的拟合程度:
R2=SSA/SST=1-SSE
R2(R的平方)也被称为决定系数或判定系数。
第二个问题,我们的模型是否显著预测了y的变化?
假设y与x的线性关系不明显,那么SSA相对SSE占有较大的比例的概率则越小。换句话说,在y与x无线性关系的前提下,SSA相对SSE的占比越高的概率是越小的,这会呈现一定的概率分布。统计学家告诉我们它满足F分布,就像这样:
如果SSA相对SSE占比较大的情况出现了,比如根据F分布,这个值出现的概率小于5%。那么,我们最好是拒绝y与x线性关系不显著的原始假设,认为二者存在显著的线性关系较为合适。
第三个问题,每个自变量是否能显著预测因变量的变化?换句话说,回归系数是否显著?
回归系数的显著性检验是围绕回归系数的抽样分布(t分布)来进行的,推断过程类似于整个模型的检验过程,不赘言。
实际上,对于只有一个自变量的一元线性模型,模型的显著性检验和回归系数的检验是一致的,但对于多元线性模型来说,二者就不能等价了。
利用statsmodels进行最小二乘回归
#导入相应模块
In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: import statsmodels.api as sm
#将数据导入pandas的dataframe对象,第一列(年份)作为行标签
In [4]:
df=pd.read_csv('/Users/xiangzhendong/Downloads/vincentarelbundock-Rdatasets-121****70/csv/datasets/longley.csv',
index_col=0)
#查看头部数据
In [5]: df.head()
Out[5]:
GNP.deflator GNP Unemployed Armed.Forces Population Year \
1947 83.0 234.289 235.6 159.0 107.608 1947
1948 88.5 259.426 232.5 145.6 108.632 1948
1949 88.2 258.054 368.2 161.6 109.773 1949
1950 89.5 284.599 335.1 165.0 110.929 1950
1951 96.2 328.975 209.9 309.9 112.075 1951
Employed
1947 60.323
1948 61.122
1949 60.171
1950 61.187
1951 63.221
#设置预测变量和结果变量,用GNP预测Employed
In [6]: y=df.Employed #结果变量
In [7]: X=df.GNP #预测变量
#为模型增加常数项,即回归线在y轴上的截距
In [8]: X=sm.add_constant(X)
#执行最小二乘回归,X可以是numpy array或pandas dataframe(行数等于数据点个数,列数为预测变量个数),y可以是一维数组(numpy array)或pandas series
In [10]: est=sm.OLS(y,X)
#使用OLS对象的fit()方法来进行模型拟合
In [11]: est=est.fit()
#查看模型拟合的结果
In [12]: est.summary()
Out[12]:
#查看最终模型的参数
In [13]: est.params
Out[13]:
const 51.843590
GNP 0.034752
dtype: float64
#选择100个从最小值到最大值平均分布(equally spaced)的数据点
In [14]: X_prime=np.linspace(X.GNP.min(), X.GNP.max(),100)[:,np.newaxis]
In [15]: X_prime=sm.add_constant(X_prime)
#计算预测值
In [16]: y_hat=est.predict(X_prime)
In [17]: plt.scatter(X.GNP, y, alpha=0.3) #画出原始数据
#分别给x轴和y轴命名
In [18]: plt.xlabel("Gross National Product")
In [19]: plt.ylabel("Total Employment")
In [20]: plt.plot(X_prime[:,1], y_hat, 'r', alpha=0.9) #添加回归线,红色
多元线性回归(预测变量不止一个)
我们用一条直线来描述一元线性模型中预测变量和结果变量的关系,而在多元回归中,我们将用一个多维(p)空间来拟合多个预测变量。下面表现了两个预测变量的三维图形:商品的销量以及在电视和广播两种不同媒介的广告预算。
数学模型是:
Sales = beta_0 + beta_1*TV + beta_2*Radio
图中,白色的数据点是平面上的点,黑色的数据点事平面下的点。平面的颜色是由对应的商品销量的高低决定的,高是红色,低是蓝色。
利用statsmodels进行多元线性回归
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: import statsmodels.api as sm
In [4]: df_adv=pd.read_csv('http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv',index_col=0)
In [6]: X=df_adv[['TV','Radio']]
In [7]: y=df_adv['Sales']
In [8]: df_adv.head()
Out[8]:
TV Radio Newspaper Sales
1 230.1 37.8 69.2 22.1
2 44.5 39.3 45.1 10.4
3 17.2 45.9 69.3 9.3
4 151.5 41.3 58.5 18.5
5 180.8 10.8 58.4 12.9
In [9]: X=sm.add_constant(X)
In [10]: est=sm.OLS(y,X).fit()
In [11]: est.summary()
Out[11]:
#你也可以使用statsmodels的formula模块来建立多元回归模型
In [12]: import statsmodels.formula.api as smf
In [13]: est=smf.ols(formula='Sales ~ TV + Radio',data=df_adv).fit()
处理分类变量
性别或地域都属于分类变量。
In [15]: df= pd.read_csv('http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/SAheart.data', index_col=0)
In [16]: X=df.copy()
#利用dataframe的pop方法将chd列单独提取出来
In [17]: y=X.pop('chd')
In [18]: df.head()
Out[18]:
sbp tobacco ldl adiposity famhist typea obesity alcohol \
row.names
1 160 12.00 5.73 23.11 Present 49 25.30 97.20
2 144 0.01 4.41 28.61 Absent 55 28.87 2.06
3 118 0.08 3.48 32.28 Present 52 29.14 3.81
4 170 7.50 6.41 38.03 Present 51 31.99 24.26
5 134 13.60 3.50 27.78 Present 60 25.99 57.34
age chd
row.names
1 52 1
2 63 1
3 46 0
4 58 1
5 49 1
In [19]: y.groupby(X.famhist).mean()
Out[19]:
famhist
Absent 0.237037
Present 0.500000
Name: chd, dtype: float64
In [20]: import statsmodels.formula.api as smf
In [21]: df['famhist_ord']=pd.Categorical(df.famhist).labels
In [22]: est=smf.ols(formula="chd ~ famhist_ord", data=df).fit()
分类变量的编码方式有许多,其中一种编码方式是虚拟变量编码(dummy-encoding),就是把一个k个水平的分类变量编码成k-1个二分变量。在statsmodels中使用C函数实现。
In [24]: est=smf.ols(formula="chd ~ C(famhist)", data=df).fit()
In [26]: est.summary()
Out[26]:
处理交互作用
随着教育年限(education)的增长,薪酬(wage)会增加吗?这种影响对男性和女性而言是一样的吗?
这里的问题就涉及性别与教育年限的交互作用。
换言之,教育年限对薪酬的影响是男女有别的。
#导入相关模块
In [1]: import pandas as pd
In [2]: import numpy as np
In [4]: import statsmodels.api as sm
#导入数据,存入dataframe对象
In [5]: df=pd.read_csv('/Users/xiangzhendong/Downloads/pydatafromweb/wages.csv')
In [6]: df[['Wage','Education','Sex']].tail()
Out[6]:
Wage Education Sex
529 11.36 18 0
530 6.10 12 1
531 23.25 17 1
532 19.88 12 0
533 15.38 16 0
由于性别是一个二分变量,我们可以绘制两条回归线,一条是sex=0(男性),一条是sex=1(女性)
#绘制散点图
In [7]: plt.scatter(df.Education,df.Wage, alpha=0.3)
In [9]: plt.xlabel('education')
In [10]: plt.ylabel('wage')
#linspace的作用是生成从最小到最大的均匀分布的n个数
In [17]: education_linspace=np.linspace(df.Education.min(), df.Education.max(),100)
In [12]: import statsmodels.formula.api as smf
In [13]: est=smf.ols(formula='Wage ~ Education + Sex', data=df).fit()
In [18]: plt.plot(education_linspace, est.params[0]+est.params[1]*education_linspace+est.params[2]*0, 'r')
In [19]: plt.plot(education_linspace, est.params[0]+est.params[1]*education_linspace+est.params[2]*1, 'g')
以上两条线是平行的。这是因为分类变量只影响回归线的截距,不影响斜率。
接下来我们可以为回归模型增加交互项来探索交互效应。也就是说,对于两个类别,回归线的斜率是不一样的。
In [32]: plt.scatter(df.Education,df.Wage, alpha=0.3)
In [33]: plt.xlabel('education')
In [34]: plt.ylabel('wage')
#使用*代表我们的回归模型中除了交互效应,也包括两个变量的主效应;如果只想看交互效应,可以用:代替,但通常不会只看交互效应
In [35]: est=smf.ols(formula='Wage ~ Sex*Education', data=df).fit()
In [36]: plt.plot(education_linspace,
est.params[0]+est.params[1]*0+est.params[2]*education_linspace+est.params[3]*0*education_linspace,
'r')
In [37]: plt.plot(education_linspace,
est.params[0]+est.params[1]*1+est.params[2]*education_linspace+est.params[3]*1*education_linspace,
'g')
参考资料:
DataRobot | Ordinary Least Squares in Python
DataRoboe | Multiple Regression using Statsmodels
AnalyticsVidhya | 7 Types of Regression Techniques you should know!
维基百科 | 最小二乘法
python信用评分卡建模(附代码,博主录制)
线性回归linear regression(python脚本实现)的更多相关文章
- 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)
机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题 如果有多个特征值 那么这种情况下 假设h表示 ...
- TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现
此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...
- Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Ng第二课:单变量线性回归(Linear Regression with One Variable)
二.单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 代价函数的直观理解 2.4 梯度下降 2.5 梯度下 ...
- 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)
二.单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 代价函数的直观理解 I 2.4 代价函数的直观理解 I ...
- 机器学习方法:回归(一):线性回归Linear regression
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 开一个机器学习方法科普系列:做基础回顾之用,学而时习之:也拿出来与大家分享.数学水平有限,只求易懂,学习与工 ...
- 斯坦福CS229机器学习课程笔记 Part1:线性回归 Linear Regression
机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-sq ...
- 机器学习 (一) 单变量线性回归 Linear Regression with One Variable
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...
- 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
随机推荐
- 关于Java中线程取值并返回的方法
如何让一个线程不断跑起来,并且在取到值的时候能返回值而线程能继续跑呢? 我们都知道可以用Callable接口获得线程的返回值,或者触发事件监听来操作返回值,下面我将介绍另一种方法. public ab ...
- 小程序UI设计(5)-符合视觉规范-按钮视觉规范
在设计工具中,根据规范我们定义了大中小三种按钮的尺寸大:720rpx *94rpx 圆角10px 字体18中:360rpx*70rpx 圆角8px 字体16 文字距离两边最小60小:120rpx*60 ...
- ZenCart通过Contact Us接收垃圾邮件的过滤方案
最近收到一些通过Contact Us进行垃圾外链群发的邮件,虽然可以通过在Contact Us增加验证码来解决,但不利于客户体验.所以我们可以通过简单的关键词过滤来实现,一般垃圾外链都含有“[url= ...
- tensorflow以文件形式运行程序实例
在命令行中进入到代码所在文件夹 执行python mnist2.p或python aaa/mnist2.py这种形式
- ffmpeg函数01__swr_convert()
swr_convert() 针对每一帧音频的处理.把一帧帧的音频作相应的重采样 int swr_convert(struct SwrContext *s, uint8_t **out, int out ...
- 免费自动化测试工具Katalon Studio入门
Katalon Studio 一.简介: Katalon Studio 是一个在网页应用.移动和网页服务方面功能强大的自动化测试解决方案.基于 Selenium 和 Appium 框架,Katalon ...
- HDU - 4431 Mahjong (模拟+搜索+哈希+中途相遇)
题目链接 基本思路:最理想的方法是预处理处所有胡牌的状态的哈希值,然后对于每组输入,枚举每种新加入的牌,然后用哈希检验是否满足胡牌的条件.然而不幸的是,由于胡牌的状态数过多(4个眼+一对将),预处理的 ...
- k8spod资源的基础管理操作
pod是k8s api中的核心资源类型,它可以定义在json或yaml格式的资源清单中,由资源管理命令进行陈述式或声明式管理.创建时,用户可通过create或apply命令将请求提交到apiserve ...
- Unity3D资源
1.ShareSDK 地址:https://github.com/MobClub/New-Unity-For-ShareSDK 文档:产品集成步骤 2.Protobuf https://github. ...
- 如何配置IIS使其支持APK/WGT文件的下载
1.打开Internet 信息服务(IIS)管理器: 2.选择需要配置的网站: 3.右侧功能界面双击进入“MIME类型”: 4.点击右侧“添加”按钮,在弹出窗口里文件扩展名输入:apk,MIME类型输 ...