D-query SPOJ 树状数组+离线/莫队算法

题意

有一串正数,求一定区间中有多少个不同的数

解题思路——树状数组

说明一下,树状数组开始全部是零。

首先,我们存下所有需要查询的区间,然后根据右端点进行从小到大的排序。然后依次处理这个区间中的答案,仔细想一下,后面的区间答案不会受到影响。

怎么处理区间中的答案呢?

我们按照数字出现的顺序,向树状数组中加一,如果这个数字之前出现了,那么需要树状数组在这个数字上次出现的位置减一,这样可以保证在一定区间内,每个数字都有在树状数组中唯一对应的1,当处理到数字的位置到达某个询问的右端点时,就可以求一下这个询问区间有几个1,这个就是这个区间内不同数字的个数。

这里需要标记数字是否之前出现过,因此就开了一个vis数组,但是题目数字出现的范围太大而输入的数字个数不是很多,因此可以进行离散化,重新进行映射到小的区间中。当然也可以使用map。

点操作+区间求和正好就可以使用树状数组。

下面是代码实现,有注释可以更加清晰。

莫队算法

莫队算法看了好多博客文章,这个题是入门题,思想很巧妙,复杂度在\(O(n*lgn)\)

详解这里就不写了,主要是最近时间比较紧,得赶紧看其他题,这里就推荐一个博客,写的很好,就是背景太花哨了,影响到我阅读。传送门

代码实现(树状数组+莫队算法)

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
typedef long long ll;
const int maxn=3e4+7;
const int maxq=2e5+7;
struct query{
int L, R, id;
bool friend operator <(query a, query b)
{
return a.R < b.R;
}
}q[maxq];
int num[maxn]; //存储那一串数字
int bak[maxn]; //备份数字,用来进行离散化
int sum[maxn]; //树状数组
int pre[maxn]; //记录数字之前出现的位置
int vis[maxn]; //标记数字是否出现过
int ans[maxq]; //离线处理,需要记录答案,之后一并输出
int n, m, cnt; //n数字的个数,m个询问,cnt是映射后的范围
void up(int id, int x)
{
while(id<=n)
{
sum[id]+=x;
id += id&(-id);
}
} ll getsum(int id)
{
ll ret=0;
while(id>0)
{
ret+=sum[id];
id -= id&(-id);
}
return ret;
}
int getid(int num) //求映射后的编码
{
return lower_bound(bak, bak+cnt, num)-bak+1;
}
int main()
{
while(scanf("%d", &n)!=EOF)
{
for(int i=1;i<=n; i++) //初始化
{
sum[i]=0;
vis[i]=0;
}
for(int i=1; i<=n; i++) //读入数据+备份。
{
scanf("%d", &num[i]);
bak[i-1]=num[i];//从0开始便于后面初始化
}
scanf("%d", &m);
for(int i=1; i<=m; i++)//读入查询
{
scanf("%d%d", &q[i].L, &q[i].R);
q[i].id=i;
}
sort(q+1, q+m+1);//排序
sort(bak, bak+n);//离散化先排序
cnt=unique(bak, bak+n)-bak;//去重后的个数
int j=1;
for(int i=1; i<=m; i++)
{
while(j <= q[i].R && j<=n)
{
int tmp=getid(num[j]); //获取编号
if(vis[tmp]!=0)
{
up(pre[tmp], -1);
pre[tmp]=j;
up(j, 1);
j++;
}
else {
pre[tmp]=j;
vis[tmp]=1;
up(j, 1);
j++;
}
}
ans[q[i].id]=getsum(q[i].R)-getsum(q[i].L-1);
}
for(int i=1; i<=m; i++)
{
printf("%d\n", ans[i]);
}
}
return 0;
}
//莫队算法
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=3e4+7;
const int maxq=2e5+7;
int a[maxn];
int book[1000007]; //记录是否出现和出现的次数
int ans[maxq];
int block, tmp;
struct node{
int s, t;
int id, blk;
bool friend operator < (node a, node b)
{
if(a.blk==b.blk)
return a.t < b.t;
return a.s<b.s;
}
}q[maxq];
void add(int x)
{
if(book[a[x]]==0)
tmp++;
book[a[x]]++;
}
void del(int x)
{
book[a[x]]--;
if(book[a[x]]==0)
tmp--;
}
int main()
{
int n, m;
while(scanf("%d", &n)!=EOF)
{
memset(book, 0, sizeof(book));
block=sqrt(n*1.0);
for(int i=1; i<=n; i++)
{
scanf("%d", &a[i]);
}
scanf("%d", &m);
for(int i=1; i<=m; i++)
{
scanf("%d%d", &q[i].s, &q[i].t);
q[i].id=i;
q[i].blk=q[i].s/block;
}
sort(q+1, q+m+1);
int l=1, r=0, s, t;
tmp=0;
for(int i=1; i<=m; i++)
{
s=q[i].s;
t=q[i].t;
while(l<s)
{
del(l);
l++;
}
while(l>s)
{
l--;
add(l);
}
while(r<t)
{
r++;
add(r);
}
while(r>t)
{
del(r);
r--;
}
ans[q[i].id]=tmp;
}
for(int i=1; i<=m; i++)
{
printf("%d\n", ans[i]);
}
}
return 0;
}

D-query SPOJ 树状数组+离线的更多相关文章

  1. SPOJ DQUERY树状数组离线or主席树

    D-query Time Limit: 227MS   Memory Limit: 1572864KB   64bit IO Format: %lld & %llu Submit Status ...

  2. Necklace HDU - 3874 (线段树/树状数组 + 离线处理)

    Necklace HDU - 3874  Mery has a beautiful necklace. The necklace is made up of N magic balls. Each b ...

  3. 2016 Multi-University Training Contest 5 1012 World is Exploding 树状数组+离线化

    http://acm.hdu.edu.cn/showproblem.php?pid=5792 1012 World is Exploding 题意:选四个数,满足a<b and A[a]< ...

  4. HDU 5869 Different GCD Subarray Query 树状数组+离线

    Problem Description This is a simple problem. The teacher gives Bob a list of problems about GCD (Gr ...

  5. HDU3333 Turing Tree 树状数组+离线处理

    Turing Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  6. HDU 4417 - Super Mario ( 划分树+二分 / 树状数组+离线处理+离散化)

    题意:给一个数组,每次询问输出在区间[L,R]之间小于H的数字的个数. 此题可以使用划分树在线解决. 划分树可以快速查询区间第K小个数字.逆向思考,判断小于H的最大的一个数字是区间第几小数,即是答案. ...

  7. Codeforces Round #365 (Div. 2) D 树状数组+离线处理

    D. Mishka and Interesting sum time limit per test 3.5 seconds memory limit per test 256 megabytes in ...

  8. HDU 4630 No Pain No Game 树状数组+离线查询

    思路参考 这里. #include <cstdio> #include <cstring> #include <cstdlib> #include <algo ...

  9. HDOJ 4417 - Super Mario 线段树or树状数组离线处理..

    题意: 同上 题解: 抓着这题作死的搞~~是因为今天练习赛的一道题.SPOJ KQUERY.直到我用最后一种树状数组通过了HDOJ这题后..交SPOJ的才没超时..看排名...时间能排到11名了..有 ...

随机推荐

  1. Django【第17篇】:Django之信号

    django中的信号 Django中的信号及其用法 Django中提供了"信号调度",用于在框架执行操作时解耦. 一些动作发生的时候,系统会根据信号定义的函数执行相应的操作 Dja ...

  2. Python重写父类方法__len__

    class Liar(list): def __len__(self): return super().__len__() + 3 # 直接写 super().__len__() 而没有 return ...

  3. 【NOIP2016提高A组模拟8.14】疯狂的火神

    题目 火神为了检验zone的力量,他决定单挑n个人. 由于火神训练时间有限,最多只有t分钟,所以他可以选择一部分人来单挑,由于有丽子的帮助,他得到了每个人特定的价值,每个人的价值由一个三元组(a,b, ...

  4. hihocoder 1582 : Territorial Dispute (计算几何)(2017 北京网络赛E)

    题目链接 题意:给出n个点.用两种颜色来给每个点染色.问能否存在一种染色方式,使不同颜色的点不能被划分到一条直线的两侧. 题解:求个凸包(其实只考虑四个点就行.但因为有板子,所以感觉这样写更休闲一些. ...

  5. vue-cli3.0以上项目中引入jquery的方法

    这里配置的是vue-cli3.0引入jquery的方法,不是vue-cli2.0的配置方法 一.安装jquery npm install jquery --save 二.在vue.config.js ...

  6. iOS Core Image-----十行代码实现微信朋友圈模糊效果

    昨天下午微信的朋友圈着实火了一把,在这之后好多程序员都通过抓包工具看到了原图,但是我却在想,网上说是在移动前端做到的那是怎么做到的呢,经过一些学习,终于掌握了一些Core Image的知识,做出了相应 ...

  7. linux运维、架构之路-linux基础知识

    1.PATH环境变量 LANG ——————>变量名字 $LANG ——————>查看变量内容 LANG= ——————>修改变量 系统环境变量填加内容前面使用export expo ...

  8. select下拉框数据回显

    前台页面 <select class="select" name="operatorId" id="operatorId" style ...

  9. js加密php解密(CryptoJS)碰到的坑

    今天做了一个功能,需要js传密码到php文件,对js密码 进行判断,为想为这个传输过程进行解密,参考了网上的一个方法(这个方法我只是使用了,并没有太深了解0.0) 首先要引入3个js文件 (在网上可搜 ...

  10. input 的type类型值

    input有很多属性,我们先来说一下最原始的,也就是HTML5之前的 1)text: 定义单行的输入字段,可扎起其中输入文本 2)password:定义密码字段,会显示自符掩码 3)file: 定义输 ...