题目描述

Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.

Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.

农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地。John打算在牧场上的某几格里种上美味的草,供他的奶牛们享用。

遗憾的是,有些土地相当贫瘠,不能用来种草。并且,奶牛们喜欢独占一块草地的感觉,于是John不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。

John想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择?(当然,把新牧场完全荒废也是一种方案)

输入输出格式

输入格式:

第一行:两个整数M和N,用空格隔开。

第2到第M+1行:每行包含N个用空格隔开的整数,描述了每块土地的状态。第i+1行描述了第i行的土地,所有整数均为0或1,是1的话,表示这块土地足够肥沃,0则表示这块土地不适合种草。

输出格式:

一个整数,即牧场分配总方案数除以100,000,000的余数。

输入输出样例

输入样例#1:

2 3

1 1 1

0 1 0

输出样例#1:

9

题意:



思路:

对于每一行 ,最多有m个1,每一个牧田选择与不选择有两个状态,所以所有的状态是 2^m-1,因为m不大于31,所以我们可以用一个int类型的整数来表示牧田选择的信息。(二进制状态,第i为选择的话,那么int数中的第i位就为1)

首先预处理出0~(1<<m)-1 中所有可能情况中, 没有相邻牧田的状态。

然后处理一行中,符合肥沃条件而且符合不相邻约数条件的状态i,

我们令 dp[1][i]=1;

即我们定义DP的状态是 dp[i][j] 表示从第i行选择第j个状态时,所有可能的种类数。

那么转移方程是:

我们枚举每一个上一行的状态k (因为当前行是否合法只和上一行的状态有关。)

dp[i][j]=(dp[i][j]+dp[i-1][k])%mod;

代码有更每一行的功能备注和说明。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
inline void getInt(int* p);
const int maxn=1000010;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
const ll mod=1e9;
int n,m;
int a[50];
bool can[maxn];
ll dp[15][maxn];
int main()
{
//freopen("D:\common_text\code_stream\in.txt","r",stdin);
//freopen("D:\common_text\code_stream\out.txt","w",stdout);
gbtb;
cin>>n>>m;
int x;
repd(i,1,n)
{
repd(j,1,m)
{
cin>>x;
a[i]=(a[i]<<1)+x;
}
}
int maxstate=(1<<m)-1;// 每一行最多的状态数
for(int i=0;i<=maxstate;i++)
{
if(((i<<1)&i)==0&&((i>>1)&i)==0)// 确保数字i的二进制信息中没有相邻的1
{
can[i]=1;
}
} for(int i=0;i<=maxstate;i++)
{
if(can[i])
{
if((a[1]&i)==i)// 确实i是a[1]肥沃状态的子集
{
dp[1][i]=1;
}
}
}
for(int i=2;i<=n;i++)
{
for(int j=0;j<=maxstate;j++)
{
if(can[j]&&(a[i]&j)==j)
{
for(int k=0;k<=maxn;k++)// 暴力枚举上一行的所有状态
{
if(can[k])
{
if((j&k)==0)// 上一行的k状态和这一行的j状态,没有上下相邻
{
dp[i][j]=(dp[i][j]+dp[i-1][k])%mod;
}
}
}
}
}
}
ll ans=0ll;
for(int i=0;i<=maxstate;i++)
{
ans=(ans+dp[n][i])%mod;// 累计答案。
}
cout<<ans<<endl; return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

洛谷P1879 [USACO06NOV]玉米田Corn Fields (状态压缩DP)的更多相关文章

  1. 洛谷P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    洛谷P1879 [USACO06NOV]玉米田Corn Fields \(f[i][j]\) 表示前 \(i\) 行且第 \(i\) 行状态为 \(j\) 的方案总数.\(j\) 的大小为 \(0 \ ...

  2. C++ 洛谷 P1879 [USACO06NOV]玉米田Corn Fields

    没学状压DP的看一下 合法布阵问题  P1879 [USACO06NOV]玉米田Corn Fields 题意:给出一个n行m列的草地(n,m<=12),1表示肥沃,0表示贫瘠,现在要把一些牛放在 ...

  3. 洛谷 P1879 [USACO06NOV]玉米田Corn Fields 题解

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 Farmer John has purchased a lush new rectangular pasture compo ...

  4. 洛谷 P1879 [USACO06NOV]玉米田Corn Fields

    题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...

  5. 洛谷P1879 [USACO06NOV]玉米田Corn Fields【状压DP】题解+AC代码

    题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...

  6. [洛谷P1879][USACO06NOV]玉米田Corn Fields

    题目大意:有一个$n\times m$的矩阵,$(1 \leq m \leq 12; 1 \leq n \leq 12)$,想在其中的一些格子中种草,一些格子不能种草,且两块草地不相邻.问有多少种种植 ...

  7. [P1879][USACO06NOV]玉米田Corn Fields (状态压缩)

    最近题目都有状态压缩,我是蒟蒻,并不会状态压缩 然后我决定学了! 然后发现我学不来. OI-WIKI上的界面给我推荐了这道题https://oi-wiki.org/dp/state/ 状态压缩入门题, ...

  8. 【洛谷P1879】玉米田Corn Fields

    玉米田Corn Fields 题目链接 此题和互不侵犯状压DP的做法类似 f[i][j]表示前i行,第i行种植(1)/不种植(0)构成的二进制数为j时的方案数 首先我们可以预处理出所有一行中没有两个相 ...

  9. P1879 [USACO06NOV]玉米田Corn Fields (状压dp入门)

    题目链接: https://www.luogu.org/problemnew/show/P1879 具体思路: 我们可以先把所有合法的情况枚举出来,然后对第一行判断有多少种情况满足,然后对于剩下的行数 ...

随机推荐

  1. layui select动态添加option

    <form class="layui-form" action=""> <div class="layui-form-item pr ...

  2. 梯度、Hessian矩阵、平面方程的法线以及函数导数的含义

    本文转载自: Xianling Mao的专栏 =========================================================================== 想 ...

  3. 后台以json数据形式返回之后前台接受的方法以及之后的解析总结

    1.前台AJAX请求,后台以对象转JSON形式返回: 后台代码: @RequestMapping(value = "/queryDist", method = RequestMet ...

  4. 操作系统(3)实验相关原理——bootloader启动uCore

    x86启动顺序 CS+EIP决定启动地址. CS部分后面又4个0,相当于是左移了4位.总之就是要让CS左移4位之后加上EIP来得到要跳转的地址. 0x7c00地方开始的512字节的内容就是bootlo ...

  5. Java多线程学习——sleep和yield

    Thread.sleep(); Thread.yield(); 相同点: 让线程暂停运行. 都是静态方法,可以直接调用. 不同点: sleep让线程从运行状态进入阻塞状态,但是不放开手中的资源. yi ...

  6. Spoj 2798 Qtree3

    一棵结点为黑色或白色的树,初始都是白色的.有两种操作 1 将一个结点换颜色 2 询问从根到结点u路径上面的第一个黑色点,没有则输出-1 InputIn the first line there are ...

  7. 【HBase】三、HBase和RDBMS的比较

      HBase作为一种NoSQL的数据库,和传统的类似于mysql这样的关系型数据库是有很大区别的,本文来对他们做一个对比分析,以便更加深入的了解HBase.   主要区别体现在以下六个方面:   1 ...

  8. Arm-linux-gcc-4.3.2安装步骤 (转)

    http://blog.chinaunix.net/uid-26119896-id-3302233.html 安装交叉编译工具链: 1.首先以root用户登入 2.复制arm-linux-gcc-4. ...

  9. 深入理解java:1.3.2 JVM监控与调优

    学习Java GC机制的目的是为了实用,也就是为了在JVM出现问题时分析原因并解决之. 本篇,来看看[ 如何监控和优化GC机制.] 通过学习,我觉得JVM监控与调优,主要在3个着眼点上: 1,如何配置 ...

  10. 红帽学习笔记[RHCSA] 第一周

    目录 红帽学习笔记[RHCSA] 环境 第一课 关于Shell 命令的基础知识 在终端中敲命令的快捷键 本次课程涉及的命令 第二课 常用的目录结构与用途 本次课程涉及到的命令 第三课 关于Linux的 ...