题目描述

Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.

Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.

农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地。John打算在牧场上的某几格里种上美味的草,供他的奶牛们享用。

遗憾的是,有些土地相当贫瘠,不能用来种草。并且,奶牛们喜欢独占一块草地的感觉,于是John不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。

John想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择?(当然,把新牧场完全荒废也是一种方案)

输入输出格式

输入格式:

第一行:两个整数M和N,用空格隔开。

第2到第M+1行:每行包含N个用空格隔开的整数,描述了每块土地的状态。第i+1行描述了第i行的土地,所有整数均为0或1,是1的话,表示这块土地足够肥沃,0则表示这块土地不适合种草。

输出格式:

一个整数,即牧场分配总方案数除以100,000,000的余数。

输入输出样例

输入样例#1:

2 3

1 1 1

0 1 0

输出样例#1:

9

题意:



思路:

对于每一行 ,最多有m个1,每一个牧田选择与不选择有两个状态,所以所有的状态是 2^m-1,因为m不大于31,所以我们可以用一个int类型的整数来表示牧田选择的信息。(二进制状态,第i为选择的话,那么int数中的第i位就为1)

首先预处理出0~(1<<m)-1 中所有可能情况中, 没有相邻牧田的状态。

然后处理一行中,符合肥沃条件而且符合不相邻约数条件的状态i,

我们令 dp[1][i]=1;

即我们定义DP的状态是 dp[i][j] 表示从第i行选择第j个状态时,所有可能的种类数。

那么转移方程是:

我们枚举每一个上一行的状态k (因为当前行是否合法只和上一行的状态有关。)

dp[i][j]=(dp[i][j]+dp[i-1][k])%mod;

代码有更每一行的功能备注和说明。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
inline void getInt(int* p);
const int maxn=1000010;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
const ll mod=1e9;
int n,m;
int a[50];
bool can[maxn];
ll dp[15][maxn];
int main()
{
//freopen("D:\common_text\code_stream\in.txt","r",stdin);
//freopen("D:\common_text\code_stream\out.txt","w",stdout);
gbtb;
cin>>n>>m;
int x;
repd(i,1,n)
{
repd(j,1,m)
{
cin>>x;
a[i]=(a[i]<<1)+x;
}
}
int maxstate=(1<<m)-1;// 每一行最多的状态数
for(int i=0;i<=maxstate;i++)
{
if(((i<<1)&i)==0&&((i>>1)&i)==0)// 确保数字i的二进制信息中没有相邻的1
{
can[i]=1;
}
} for(int i=0;i<=maxstate;i++)
{
if(can[i])
{
if((a[1]&i)==i)// 确实i是a[1]肥沃状态的子集
{
dp[1][i]=1;
}
}
}
for(int i=2;i<=n;i++)
{
for(int j=0;j<=maxstate;j++)
{
if(can[j]&&(a[i]&j)==j)
{
for(int k=0;k<=maxn;k++)// 暴力枚举上一行的所有状态
{
if(can[k])
{
if((j&k)==0)// 上一行的k状态和这一行的j状态,没有上下相邻
{
dp[i][j]=(dp[i][j]+dp[i-1][k])%mod;
}
}
}
}
}
}
ll ans=0ll;
for(int i=0;i<=maxstate;i++)
{
ans=(ans+dp[n][i])%mod;// 累计答案。
}
cout<<ans<<endl; return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

洛谷P1879 [USACO06NOV]玉米田Corn Fields (状态压缩DP)的更多相关文章

  1. 洛谷P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    洛谷P1879 [USACO06NOV]玉米田Corn Fields \(f[i][j]\) 表示前 \(i\) 行且第 \(i\) 行状态为 \(j\) 的方案总数.\(j\) 的大小为 \(0 \ ...

  2. C++ 洛谷 P1879 [USACO06NOV]玉米田Corn Fields

    没学状压DP的看一下 合法布阵问题  P1879 [USACO06NOV]玉米田Corn Fields 题意:给出一个n行m列的草地(n,m<=12),1表示肥沃,0表示贫瘠,现在要把一些牛放在 ...

  3. 洛谷 P1879 [USACO06NOV]玉米田Corn Fields 题解

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 Farmer John has purchased a lush new rectangular pasture compo ...

  4. 洛谷 P1879 [USACO06NOV]玉米田Corn Fields

    题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...

  5. 洛谷P1879 [USACO06NOV]玉米田Corn Fields【状压DP】题解+AC代码

    题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...

  6. [洛谷P1879][USACO06NOV]玉米田Corn Fields

    题目大意:有一个$n\times m$的矩阵,$(1 \leq m \leq 12; 1 \leq n \leq 12)$,想在其中的一些格子中种草,一些格子不能种草,且两块草地不相邻.问有多少种种植 ...

  7. [P1879][USACO06NOV]玉米田Corn Fields (状态压缩)

    最近题目都有状态压缩,我是蒟蒻,并不会状态压缩 然后我决定学了! 然后发现我学不来. OI-WIKI上的界面给我推荐了这道题https://oi-wiki.org/dp/state/ 状态压缩入门题, ...

  8. 【洛谷P1879】玉米田Corn Fields

    玉米田Corn Fields 题目链接 此题和互不侵犯状压DP的做法类似 f[i][j]表示前i行,第i行种植(1)/不种植(0)构成的二进制数为j时的方案数 首先我们可以预处理出所有一行中没有两个相 ...

  9. P1879 [USACO06NOV]玉米田Corn Fields (状压dp入门)

    题目链接: https://www.luogu.org/problemnew/show/P1879 具体思路: 我们可以先把所有合法的情况枚举出来,然后对第一行判断有多少种情况满足,然后对于剩下的行数 ...

随机推荐

  1. js中Array方法归类解析

    为什么要对Array方法进行归类解析 因为它常用,而且面试必问 改变原数组的方法 pop 删除并返回数组最后一个元素push 从末尾给数组添加元素,返回新数组length值reverse 颠倒数组元素 ...

  2. springMVC的常用注解有哪些?

    1.@Controller @Controller 用于标记在一个类上,使用它标记的类就是一个SpringMVC Controller 对象.分发处理器将会扫描使用了该注解的类的方法,并检测该方法是否 ...

  3. 【机器学习速成宝典】模型篇06决策树【ID3、C4.5、CART】(Python版)

    目录 什么是决策树(Decision Tree) 特征选择 使用ID3算法生成决策树 使用C4.5算法生成决策树 使用CART算法生成决策树 预剪枝和后剪枝 应用:遇到连续与缺失值怎么办? 多变量决策 ...

  4. 阶段2 JavaWeb+黑马旅游网_15-Maven基础_第1节 基本概念_03maven一键构建概念

    资料里面写好的Helloworld项目 pom.xml存放jar包的坐标 首先复制项目所在的目录的路径: 先进去复制的这个路径,然后又输入了d盘.这时候就进去到这个项目目录了. 这个项目就运行起来了. ...

  5. 系统分析与设计HW7

    XX 建模练习 要求: 练习文档编写 选择一个你喜欢的 移动App 或 其中某业务 参考 Asg_RH 文档格式 编写软件描述 文档要包含一个业务的完整过程 建模要求包括(用例图.XX业务或用例的活动 ...

  6. python学习中

    python中的单引号.双引号.三引号的用法 网上也查找了资料,理解的都有些费劲 就自己验证了一下(主要是目前掌握的python知识,不知道什么时候会同时用到这三种引号) 用python3验证的 单引 ...

  7. 爬虫三之beautifulsoup

    基本使用 from bs4 import BeautifulSoup soup = BeautifulSoup(html#,'lxml','xml','html5lib') soup.prettify ...

  8. Canvas入门01-基础知识

    定义一个canvas,直接在Html中使用canvas便签即可. <!DOCTYPE html> <html lang="en"> <head> ...

  9. 第二周总结.Java

    本学期开始学习Java课程了,首先我先说说学习Java的感觉吧,它不像C语言程序设计,但是又有语言开发的共同点.学Java语言重点是面向对象的程序设计,更加的适应生活需要和计算机开发的需要. 总的来讲 ...

  10. Android中Bitmap对象和字节流之间的相互转换(转)

    android 将图片内容解析成字节数组:将字节数组转换为ImageView可调用的Bitmap对象:图片缩放:把字节数组保存为一个文件:把Bitmap转Byte import java.io.Buf ...