题意:统计l-r中每种数字出现的次数

很明显的数位dp问题,虽然有更简洁的做法但某人已经习惯了数位dp的风格所以还是选择扬长避短吧(说白了就是菜啊)

从高位向低位走,设状态$(u,lim,ze)$表示当前走到了第几位,是否有上限,是否有前导零的状态,则问题转化成了求所有转移路径中经过的所有数字的数量统计问题。

设$f[u][lim][ze]$为从状态$(u,lim,ze)$向后走能到达的状态总数,$g[u][lim][ze][i]$为状态$(u,lim,ze)$及其向后走能到达的所有状态中数字$i$出现的总数,各种转移就行了,实现细节比较复杂就不啰嗦了~~

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=+,inf=0x3f3f3f3f;
int l,r,bit[N],nb,f[N][][],g[N][][][],vis[N][][],cnt[N],ka;
void dfs(int u,int lim,int ze) {
if(vis[u][lim][ze]==ka)return;
vis[u][lim][ze]=ka;
if(u==) {
f[u][lim][ze]=;
for(int i=; i<=; ++i)g[u][lim][ze][i]=;
return;
}
f[u][lim][ze]=;
for(int i=; i<=; ++i)g[u][lim][ze][i]=;
for(int i=; i<=(lim?bit[u]:); ++i) {
int lim2=(lim&&i==bit[u]),ze2=(ze&&i==);
dfs(u-,lim2,ze2);
f[u][lim][ze]+=f[u-][lim2][ze2];
if(!(ze&&i==))g[u][lim][ze][i]+=f[u-][lim2][ze2];
for(int j=; j<=; ++j)g[u][lim][ze][j]+=g[u-][lim2][ze2][j];
}
}
void solve(int x,int F) {
for(nb=; x; x/=)bit[++nb]=x%;
dfs(nb,,);
for(int i=; i<=; ++i)cnt[i]+=F*g[nb][][][i];
}
int main() {
while(scanf("%d%d",&l,&r)&&l) {
if(l>r)swap(l,r);
memset(cnt,,sizeof cnt);
++ka,solve(r,);
++ka,solve(l-,-);
for(int i=; i<=; ++i)printf("%d%c",cnt[i]," \n"[i==]);
}
return ;
}

UVA - 1640 The Counting Problem (数位dp)的更多相关文章

  1. UVA 1640 The Counting Problem UVA1640 求[a,b]或者[b,a]区间内0~9在里面各个数的数位上出现的总次数。

    /** 题目:UVA 1640 The Counting Problem UVA1640 链接:https://vjudge.net/problem/UVA-1640 题意:求[a,b]或者[b,a] ...

  2. 『The Counting Problem 数位dp』

    The Counting Problem Description 求 [L,R]内每个数码出现的次数. Input Format 若干行,一行两个正整数 L 和 R. 最后一行 L=R=0,表示输入结 ...

  3. UVA 1640 The Counting Problem

    https://vjudge.net/problem/UVA-1640 题意:统计区间[l,r]中0——9的出现次数 数位DP 注意删除前导0 #include<cmath> #inclu ...

  4. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  5. UVA 1640 The Counting Problem(按位dp)

    题意:给你整数a.b,问你[a,b]间每个数字分解成单个数字后,0.1.2.3.4.5.6.7.8.9,分别有多少个 题解:首先找到[0,b]与[0,a-1]进行区间减法,接着就只是求[0,x] 对于 ...

  6. UVa 1640 - The Counting Problem(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  7. POJ2282:The Counting Problem(数位DP)

    Description Given two integers a and b, we write the numbers between a and b, inclusive, in a list. ...

  8. UVa 1640 The Counting Problem (数学,区间计数)

    题意:给定两个数m, n,求从 m 到 n 中0-9数字各出现了多少次. 析:看起来挺简单的,其实并不好做,因为有容易想乱了.主要思路应该是这样的,分区间计数,先从个位进行计,一步一步的计算过来.都从 ...

  9. hdu 5106 Bits Problem(数位dp)

    题目链接:hdu 5106 Bits Problem 题目大意:给定n和r,要求算出[0,r)之间全部n-onebit数的和. 解题思路:数位dp,一个ct表示个数,dp表示和,然后就剩下普通的数位d ...

随机推荐

  1. swoole前置基础知识1——1.1多进程/多线程的概念

    一.为何需要多进程(或者多线程),为何需要并发? 这个问题或许本身都不是个问题.但是对于没有接触过多进程编程的朋友来说,他们确实无法感受到并发的魅力以及必要性. 我想,只要你不是整天都写那种int m ...

  2. 在依赖的框架中已经有统一异常处理的情况下,如何定制自己的统一异常处理spring boot版本

    spring boot 环境下的统一异常处理大家已经非常熟悉了,不熟悉的化可以参考 <<Spring Boot中Web应用的统一异常处理>>.公司内部的统一异常处理如下: @E ...

  3. C# Tcp协议收发数据(TCPClient发,Socket收)

    转载自:http://www.cnblogs.com/WTFly/p/5340617.html 运行这个程序前需要先关闭Windows防火墙,Win7系统关闭防火墙的方法是在控制面板的"控制 ...

  4. MySQL Explain命令详解--表的读取顺序,数据读取操作的类型等

    表示索引中使用的字节数,可通过该列计算查询中使用的索引的长度(key_len显示的值为索引字段的最大可能长度,并非实际使用长度,即key_len是根据表定义计算而得,不是通过表内检索出的) 不损失精确 ...

  5. python_操作MySQL 初解 之__<类方法调用并 增-删-改-查>

    文件一: 调用(sqls文件) # 导入模块 import pymysql from sqls import * # 创建类 class KaoShi(object): # 初始化 def __ini ...

  6. O017、部署DevStack

    参考https://www.cnblogs.com/CloudMan6/p/5357273.html   本节按照以下步骤部署 DevStack 实验环境,包括控制节点和计算节点.详细的部署和配置可以 ...

  7. MySQL存储引擎知多少

    MySQL是我们经常使用的数据库处理系统(DBMS),不知小伙伴们有没有注意过其中的“存储引擎”(storage_engine)呢?有时候面试题中也会问道MySQL几种常用的存储引擎的区别.这次就简短 ...

  8. Java开发者想尝试转行大数据,学习方向建议?

      ​前言 相信很多Java开发者都对大数据有一定的了解,随着大数据时代的到来,也有很多Java程序员想要转行大数据.大数据技术中大多数平台使用的都是Java语言,因此,对于大数据技术的学习来说,Ja ...

  9. 搭建私有CA并基于OpenSSL实现双向身份认证

    0x00 前言 互联网上的Web应用由于用户数目广泛,都是采用单向身份认证的,只需要客户端验证服务端的身份.但如果是企业内部的应用对接,客户端数量有限,可能就会要求对客户端也做身份验证,这时就需要一个 ...

  10. Google浏览器显示URL的 http https ....

    谷歌浏览器输入 chrome://flags/#omnibox-ui-hide-steady-state-url-trivial-subdomains 输入之后, 高亮部分选项 改为 Disabled ...