数据科学20个最好的Python库
Python 在解决数据科学任务和挑战方面继续处于领先地位。去年,我们曾发表一篇博客文章 Top 15 Python Libraries for Data Science in 2017,概述了当时业已证明最有帮助的Python库。今年,我们扩展了这个清单,增加了新的 Python 库,并重新审视了去年已经讨论过的 Python 库,重点关注了这一年来的更新。
我们的选择实际上包含了 20 多个库,因为其中一些库是相互替代的,可以解决相同的问题。因此,我们将它们放在同一个分组。
▌核心库和统计数据
1. NumPy (Commits: 17911, Contributors: 641)
官网:http://www.numpy.org/
NumPy 是科学应用程序库的主要软件包之一,用于处理大型多维数组和矩阵,它大量的高级数学函数集合和实现方法使得这些对象执行操作成为可能。
2. SciPy (Commits: 19150, Contributors: 608)
官网:https://scipy.org/scipylib/
科学计算的另一个核心库是 SciPy。它基于 NumPy,其功能也因此得到了扩展。SciPy 主数据结构又是一个多维数组,由 Numpy 实现。这个软件包包含了帮助解决线性代数、概率论、积分计算和许多其他任务的工具。此外,SciPy 还封装了许多新的 BLAS 和 LAPACK 函数。
3. Pandas (Commits: 17144, Contributors: 1165)
官网:https://pandas.pydata.org/
Pandas 是一个 Python 库,提供高级的数据结构和各种各样的分析工具。这个软件包的主要特点是能够将相当复杂的数据操作转换为一两个命令。Pandas包含许多用于分组、过滤和组合数据的内置方法,以及时间序列功能。
4. StatsModels (Commits: 10067, Contributors: 153)
官网:http://www.statsmodels.org/devel/
Statsmodels 是一个 Python 模块,它为统计数据分析提供了许多机会,例如统计模型估计、执行统计测试等。在它的帮助下,你可以实现许多机器学习方法并探索不同的绘图可能性。
Python 库不断发展,不断丰富新的机遇。因此,今年出现了时间序列的改进和新的计数模型,即 GeneralizedPoisson、零膨胀模型(zero inflated models)和 NegativeBinomialP,以及新的多元方法:因子分析、多元方差分析以及方差分析中的重复测量。
▌可视化
5. Matplotlib (Commits: 25747, Contributors: 725)
官网:https://matplotlib.org/index.html
Matplotlib 是一个用于创建二维图和图形的底层库。藉由它的帮助,你可以构建各种不同的图标,从直方图和散点图到费笛卡尔坐标图。此外,有许多流行的绘图库被设计为与matplotlib结合使用。
6. Seaborn (Commits: 2044, Contributors: 83)
官网:https://seaborn.pydata.org/
Seaborn 本质上是一个基于 matplotlib 库的高级 API。它包含更适合处理图表的默认设置。此外,还有丰富的可视化库,包括一些复杂类型,如时间序列、联合分布图(jointplots)和小提琴图(violin diagrams)。
7. Plotly (Commits: 2906, Contributors: 48)
官网:https://plot.ly/python/
Plotly 是一个流行的库,它可以让你轻松构建复杂的图形。该软件包适用于交互式 Web 应用程,可实现轮廓图、三元图和三维图等视觉效果。
8. Bokeh (Commits: 16983, Contributors: 294)
官网:https://bokeh.pydata.org/en/latest/
Bokeh 库使用 JavaScript 小部件在浏览器中创建交互式和可缩放的可视化。该库提供了多种图表集合,样式可能性(styling possibilities),链接图、添加小部件和定义回调等形式的交互能力,以及许多更有用的特性。
9. Pydot (Commits: 169, Contributors: 12)
官网:https://pypi.org/project/pydot/
Pydot 是一个用于生成复杂的定向图和无向图的库。它是用纯 Python 编写的Graphviz 接口。在它的帮助下,可以显示图形的结构,这在构建神经网络和基于决策树的算法时经常用到。
▌机器学习
10. Scikit-learn (Commits: 22753, Contributors: 1084)
官网:http://scikit-learn.org/stable/
这个基于 NumPy 和 SciPy 的 Python 模块是处理数据的最佳库之一。它为许多标准的机器学习和数据挖掘任务提供算法,如聚类、回归、分类、降维和模型选择。
利用 Data Science School 提高你的技能
Data Science School:http://datascience-school.com/
11. XGBoost / LightGBM / CatBoost (Commits: 3277 / 1083 / 1509, Contributors: 280 / 79 / 61)
官网:
http://xgboost.readthedocs.io/en/latest/
http://lightgbm.readthedocs.io/en/latest/Python-Intro.html
https://github.com/catboost/catboost
梯度增强算法是最流行的机器学习算法之一,它是建立一个不断改进的基本模型,即决策树。因此,为了快速、方便地实现这个方法而设计了专门库。就是说,我们认为 XGBoost、LightGBM 和 CatBoost 值得特别关注。它们都是解决常见问题的竞争者,并且使用方式几乎相同。这些库提供了高度优化的、可扩展的、快速的梯度增强实现,这使得它们在数据科学家和 Kaggle 竞争对手中非常流行,因为在这些算法的帮助下赢得了许多比赛。
12. Eli5 (Commits: 922, Contributors: 6)
官网:https://eli5.readthedocs.io/en/latest/
通常情况下,机器学习模型预测的结果并不完全清楚,这正是 Eli5 帮助应对的挑战。它是一个用于可视化和调试机器学习模型并逐步跟踪算法工作的软件包,为 scikit-learn、XGBoost、LightGBM、lightning 和 sklearn-crfsuite 库提供支持,并为每个库执行不同的任务。
▌深度学习
13. TensorFlow (Commits: 33339, Contributors: 1469)
官网:https://www.tensorflow.org/
TensorFlow 是一个流行的深度学习和机器学习框架,由 Google Brain 开发。它提供了使用具有多个数据集的人工神经网络的能力。在最流行的 TensorFlow应用中有目标识别、语音识别等。在常规的 TensorFlow 上也有不同的 leyer-helper,如 tflearn、tf-slim、skflow 等。
14. PyTorch (Commits: 11306, Contributors: 635)
官网:https://pytorch.org/
PyTorch 是一个大型框架,它允许使用 GPU 加速执行张量计算,创建动态计算图并自动计算梯度。在此之上,PyTorch 为解决与神经网络相关的应用程序提供了丰富的 API。该库基于 Torch,是用 C 实现的开源深度学习库。
15. Keras (Commits: 4539, Contributors: 671)
官网:https://keras.io/
Keras 是一个用于处理神经网络的高级库,运行在 TensorFlow、Theano 之上,现在由于新版本的发布,还可以使用 CNTK 和 MxNet 作为后端。它简化了许多特定的任务,并且大大减少了单调代码的数量。然而,它可能不适合某些复杂的任务。
▌分布式深度学习
16. Dist-keras / elephas / spark-deep-learning (Commits: 1125 / 170 / 67, Contributors: 5 / 13 / 11)
官网:
http://joerihermans.com/work/distributed-keras/
https://pypi.org/project/elephas/
https://databricks.github.io/spark-deep-learning/site/index.html
随着越来越多的用例需要花费大量的精力和时间,深度学习问题变得越来越重要。然而,使用像 Apache Spark 这样的分布式计算系统,处理如此多的数据要容易得多,这再次扩展了深入学习的可能性。因此,dist-keras、elephas 和 spark-deep-learning 都在迅速流行和发展,而且很难挑出一个库,因为它们都是为解决共同的任务而设计的。这些包允许你在 Apache Spark 的帮助下直接训练基于 Keras 库的神经网络。Spark-deep-learning 还提供了使用 Python 神经网络创建管道的工具。
▌自然语言处理
17. NLTK (Commits: 13041, Contributors: 236)
官网:https://www.nltk.org/
NLTK 是一组库,一个用于自然语言处理的完整平台。在 NLTK 的帮助下,你可以以各种方式处理和分析文本,对文本进行标记和标记,提取信息等。NLTK 也用于原型设计和建立研究系统。
18. SpaCy (Commits: 8623, Contributors: 215)
官网:https://spacy.io/
SpaCy 是一个具有优秀示例、API 文档和演示应用程序的自然语言处理库。这个库是用 Cython 语言编写的,Cython 是 Python 的 C 扩展。它支持近 30 种语言,提供了简单的深度学习集成,保证了健壮性和高准确率。SpaCy 的另一个重要特性是专为整个文档处理设计的体系结构,无须将文档分解成短语。
19. Gensim (Commits: 3603, Contributors: 273)
官网:https://radimrehurek.com/gensim/
Gensim 是一个用于健壮语义分析、主题建模和向量空间建模的 Python 库,构建在Numpy和Scipy之上。它提供了流行的NLP算法的实现,如 word2vec。尽管 gensim 有自己的 models.wrappers.fasttext实现,但 fasttext 库也可以用来高效学习词语表示。
▌数据采集
20. Scrapy (Commits: 6625, Contributors: 281)
官网:https://scrapy.org/
Scrapy 是一个用来创建网络爬虫,扫描网页和收集结构化数据的库。此外,Scrapy 可以从 API 中提取数据。由于该库的可扩展性和可移植性,使得它用起来非常方便。
▌结论
本文上述所列就是我们在 2018 年为数据科学领域中丰富的 Python 库集合。与上一年相比,一些新的现代库越来越受欢迎,而那些已经成为经典的数据科学任务的库也在不断改进。
下表显示了 GitHub 活动的详细统计数据:
数据科学20个最好的Python库的更多相关文章
- 程序员用于机器学习数据科学的3个顶级 Python 库
NumPy NumPy(数值 Python 的简称)是其中一个顶级数据科学库,它拥有许多有用的资源,从而帮助数据科学家把 Python 变成一个强大的科学分析和建模工具.NumPy 是在 BSD 许可 ...
- 用于数据科学的顶级 C/C++ 机器学习库整理
用于数据科学的顶级 C/C++ 机器学习库整理 介绍和动机--为什么选择 C++ C++ 非常适合 动态负载平衡. 自适应缓存以及开发大型大数据框架 和库.Google 的MapReduce.Mong ...
- (数据科学学习手札90)Python+Kepler.gl轻松制作时间轮播图
本文示例代码及数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 Kepler.gl作为一款强大的开源地理信 ...
- 20个必不可少的Python库也是基本的第三方库
个属于我常用工具的Python库,我相信你看完之后也会觉得离不开它们.他们是: Requests.Kenneth Reitz写的最富盛名的http库.每个Python程序员都应该有它. Scrapy. ...
- 20个必不可少的Python库
转载:http://www.python123.org/tutorials/58b41f2a28c8f30100bd41dc 读者们好.今天我将介绍20个属于我常用工具的Python库,我相信你看完之 ...
- 数据科学的完整学习路径—Python版(转载)
时间 2015-01-29 14:14:11 数盟原文 http://dataunion.org/?p=9805 译者: Allen 从Python菜鸟到Python Kaggler的旅程(译注: ...
- (数据科学学习手札32)Python中re模块的详细介绍
一.简介 关于正则表达式,我在前一篇(数据科学学习手札31)中已经做了详细介绍,本篇将对Python中自带模块re的常用功能进行总结: re作为Python中专为正则表达式相关功能做出支持的模块,提供 ...
- (数据科学学习手札126)Python中JSON结构数据的高效增删改操作
本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在上一期文章中我们一起学习了在Python ...
- (数据科学学习手札136)Python中基于joblib实现极简并行计算加速
本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们在日常使用Python进行各种数据计算 ...
随机推荐
- AKKA学习(二) 未完
Actor调用 从上面的例子中,我们可以大概的对AKKA在JAVA中的使用有一个全局的概念.这里我们在稍微细致的讲解一下. 在JAVA中使用AKKA进行开发主要有这几个步骤: 定义消息模型. 创建Ac ...
- GPIB、USB、PCI、PCI Express和以太网/LAN/LXI
GPIB 我们研究的第一个总线是IEEE 488总线,较为熟悉的称谓是GPIB(通用接口总线).GPIB是一种在业界已经得到证明的专为仪器控制应用设计的总线.GPIB在过去30年来一直是鲁棒的.可靠的 ...
- ubuntu 设置sudo 免密码
一. 修改sudoers的权限 二. 修改sudoers 文件 <1>. 在文件最后一行添加yourusername ALL=(ALL) NOPASSWD : ALL 三. 修改回sudo ...
- 利用BFS解决拯救007问题 -- 数据结构
题目: 7-1 拯救007 (30 分) 在老电影“007之生死关头”(Live and Let Die)中有一个情节,007被毒贩抓到一个鳄鱼池中心的小岛上,他用了一种极为大胆的方法逃脱 —— 直接 ...
- wyy Downloader(当前置顶项目)
第一个大刀阔斧肝的 PY 项目,名称简称为 wyyDLer 公开 EXE 计划: 感觉程序应该是没什么可以完善的了,然后就顶雷([雾 ) 把 EXE 放上来好了 1.2版下载链接 应该不会出事把 Qv ...
- Android热修复、插件化、组件化
模块化:项目按照独立的模块进行划分 组件化:将项目按照单一的组件来进行划分结构 项目组件化的重要环节在于,将项目按照模块来进行拆分,拆分成一个个业务module和其他支撑module(lib),各个业 ...
- Kibana server is not ready yet出现的原因
第一点:KB.ES版本不一致(网上大部分都是这么说的) 解决方法:把KB和ES版本调整为统一版本 第二点:kibana.yml中配置有问题(通过查看日志,发现了Error: No Living con ...
- JavaScript应懂的概念
目录 垃圾回收 函数作用域, 块级作用域和词法作用域 调用堆栈 原始类型 值类型和引用类型 隐式, 显式, 名义和鸭子类型 == 与 ===, typeof 与 instanceof this, ca ...
- github项目多人进行合作开发,填坑记录
1.Fork别人的github项目. Fork项目成功后,再进行把项目克隆到你本地.(我的项目已经克隆到本地了,右边是克隆下来的所有文件,除了 node_modules) git命令: git clo ...
- C++ 调用C语言、extern "C"、__cplusplus关键字
——C++编译器完全兼容C语言的编译方式.(但是得有源代码) ——C++编译器会优先使用C++的编译方式进行编译 ——extern "C" 关键字能够强制C++编译器进行C方式的编 ...