[CSP-S模拟测试]:毛一琛(meet in the middle)
题目描述
历史学考后,$MYC$和$ztr$对答案,发现选择题他们没有一道选的是一样的。最后他们都考了个$C$。现在问题来了,假设他们五五开,分数恰好一样(问答题分数也恰好一样,只考虑选择题)。已知考题是$N$道选择题(第$i$题分数为$M(i)$)。问$ztr$和$MYC$做对的题的并有多少种可能?众所周知,历史学考选择题有$25$题,但是$MYC$为了给你降低难度,$n$不超过$20$。
一句话题意:有多少个非空子集,能划分成和相等的两份。
原题见:$USACO\ 2012\ OPEN\ GOLD\ subsets$
输入格式
第一行:整数$N$
第$2..1+N$行:第$i+1$行是$M(i)$
输出格式
一个整数表示答案
样例
样例输入:
4
1
2
3
4
样例输出:
3
数据范围与提示
样例解释:
有三个合法的集合:$\{1,2,3\}$,它可以被分割成$\{1,2\}$和$\{3\}$,集合$\{1,3,4\}$,它可以被分割为$\{1,3\}$和$\{4\}$;集合$\{1,2,3,4\}$可以被分割成子集$\{1,4\}$和$\{2,3\}$。
数据范围:

不要问我为什么数据范围这么奇怪。。。因为要给大家送分。。。
题解
又被题意坑死……
先来解释一下题意,题目是要统计所有子集中可以被等分的集合(如果有多种方案,不能重复统计)。
$\Theta(n^3)$暴力应该都会打(分为不选,给一个人,给另一个人)。
但是这样显然过不去,考虑$meet\ in\ the\ middle$,先枚举左边$3^{\frac{N}{2}}$,再枚举右边$3^{\frac{N}{2}}$即可。
时间复杂度:$\Theta(6^{\frac{N}{2}})$。、
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
const int mod=30000019;
struct rec{int nxt,to,now,val;}e[59050];
int head[300000019],cnt;
int N;
int a[21];
bool vis[1100][1100],v[21];
int ans;
void insert(int now,int val)
{
int key=(val%mod+mod)%mod;
for(int i=head[key];i;i=e[i].nxt)
if(e[i].now==now&&e[i].val==val)return;
e[++cnt].nxt=head[key];
e[cnt].now=now;
e[cnt].val=val;
head[key]=cnt;
}
int ask(int now,int val)
{
int key=(val%mod+mod)%mod,res=0;
for(int i=head[key];i;i=e[i].nxt)
if(e[i].val==val&&!vis[e[i].now][now])
{
vis[e[i].now][now]=1;
res++;
}
return res;
}
void dfs1(int x,int w)
{
if(x>N/2)
{
int now=0;
for(int i=1;i<=N/2;i++)now=now<<1|v[i];
insert(now,w);
return;
}
v[x]=0;dfs1(x+1,w);
v[x]=1;dfs1(x+1,w+a[x]);
v[x]=1;dfs1(x+1,w-a[x]);
}
void dfs2(int x,int w)
{
if(x>N)
{
int now=0;
for(int i=N/2+1;i<=N;i++)now=now<<1|v[i];
ans+=ask(now,w);
return;
}
v[x]=0;dfs2(x+1,w);
v[x]=1;dfs2(x+1,w+a[x]);
v[x]=1;dfs2(x+1,w-a[x]);
}
int main()
{
scanf("%d",&N);
for(int i=1;i<=N;i++)scanf("%d",&a[i]);
dfs1(1,0);
dfs2(N/2+1,0);
printf("%d",ans-1);
return 0;
}
rp++
[CSP-S模拟测试]:毛一琛(meet in the middle)的更多相关文章
- 「10.13」毛一琛(meet in the middle)·毛二琛(DP)·毛三琛(二分+随机化???)
A. 毛一琛 考虑到直接枚举的话时间复杂度很高,我们运用$meet\ in\ the\ middle$的思想 一般这种思想看似主要用在搜索这类算法中 发现直接枚举时间复杂度过高考虑枚举一半另一半通过其 ...
- [CSP-S模拟测试]:毛三琛(随机化+二分答案)
题目传送门(内部题69) 输入格式 第一行正整数$n,P,k$.第二行$n$个自然数$a_i$.$(0\leqslant a_i<P)$. 输出格式 仅一个数表示最重的背包的质量. 样例 样例输 ...
- [CSP-S模拟测试]:毛二琛(DP)
题目描述 $MYC$在$NOI2018$中,遇到了$day1T2$这样一个题,题目是让你求有多少“好”的排列.$MYC$此题没有获得高分,感到非常惭愧,于是回去专心研究排列了.如今数排列的题对$MYC ...
- [CSP-S模拟测试]:答题(meet in the middle)
题目传送门(内部题142) 输入格式 输入文件的第一行为两个数$n,P$. 接下来一行$n$为个正整数,表示每道题的分数. 输出格式 输出一行一个正整数,为至少需要获得的分数. 样例 样例输入: 2 ...
- NOIP 模拟 $30\; \rm 毛一琛$
题解 \(by\;zj\varphi\) 如何判断一个集合可以被拆成两个相等的部分? 枚举两个集合,如果它们的和相等,那么他们的并集就是合法的,复杂度 \(\mathcal O\rm(3^n)\) \ ...
- [考试反思]1013csp-s模拟测试71:徘徊
分差好大...但是从排名上看也许还可以接受? 不算太炸 但是这个还是算了吧... 其实状态不是很好. T1不会,打的搜索,想到一个剪枝但是感觉没什么用,所以没打. 考后打上,85了...打上另一个就9 ...
- 「题解」:毛一琛/$cow$ $subsets$
问题 A: 毛一琛/$cow$ $subsets$ 时间限制: 1 Sec 内存限制: 512 MB 题面 题面谢绝公开. 题解 题名貌似是个大神??看起来像是签到题然后就死了. 首先$O(3^n) ...
- noip模拟30[毛毛毛探探探]
\(noip模拟30\;solutions\) 所以说,这次被初中的大神给爆了????? 其实真的不甘心,这次考场上的遗憾太多,浪费的时间过多,心情非常不好 用这篇题解来结束这场让人伤心的考试吧 \( ...
- noip模拟测试30
考试总结:这次考试,不是很顺利,首先看了一眼题目,觉得先做T1,想了一会觉得没什么好思路,就去打暴力,结果我不会枚举子集,码了半天发现不对,就随便交了一份代码上去,结果CE了,然后去打T3,20min ...
随机推荐
- P1162填涂颜色
这还是一个搜索题,难度较低,但我提交第三次才AC.. 观察0地图左上角的上面和左面都是一,所以先把他找粗来,然后设成start,然后dfs找到与他联通的块,涂成2即可.再说一下自己犯的低级错误:1.当 ...
- centos7安装最新稳定版nginx
开始安装 yum 安装 nginx yum安装nginx文档地址 # 一切以最新的文档页面为准--搜centos http://nginx.org/en/linux_packages.html yum ...
- python day2-爬虫实现github登录
GitHub登录 分析登录页面 开发者工具分析请求 从session请求分析得知: 1.请求的URL为:https://github.com/session 2.该请求为post请求,即需要上传dat ...
- Windows 10 IoT Core Dashboard 无法安装的问题
有人在answers.microsoft.com问这个问题,官方给了个这样的回答,然后还锁定了问题不让别人回复 您好, 了解到您在使用时遇到问题. 请您详细描述下您的操作,请问您是在打开安装程序还是在 ...
- “百度杯”CTF比赛 十一月场--CrackMe01
测试文件:https://static2.ichunqiu.com/icq/resources/fileupload/CTF/BSRC/BSRC-11-3/CrackMe01_97D2BF0DBD2E ...
- Android 开发环境部署
引言 在windows安装Android的开发环境不简单也说不上算复杂,本文写给第一次想在自己Windows上建立Android开发环境投入Android浪潮的朋友们,为了确保大家能顺利完成开发环 ...
- ioncube扩展的安装详细图文教程,适合所有新手
有些程序在php环境下运行需要安装ionCube Loader的扩展支持,这里跳过介绍这些东西直接说一下怎么让你的主机环境支持这种扩展,顺利的让你的程序运行起来!这个教程适合用云服务器或者独立服务器的 ...
- ffmpeg 常用命令汇总
最近工作常用到ffmpeg 做一些视频数据的处理转换等,用来做测试,今天总结了一下,并参考了网上一些部分朋友的经验,一起在这里汇总了一下,有需要的朋友可以收藏测试一下,有问题可以回帖交流. 1.ffm ...
- python之模块导入和包
一.何为模块 1.一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 2.模块目的和函数,对象等一样,是为了代码的复用性而存在的.即一个py程序写了很多功能,也可 ...
- pythonr-内置函数
pythonr-内置函数 all print (all([1,-5,3])) print (all([0,-5,3])) 如果有0 就不为真,非0就是为真 打印结果 True Flase all pr ...