#include <iostream>
#include <cassert>
#include <stack>
#include <math.h> using namespace std; int QuickSortOnce(int a[], int low, int high) {
// 将首元素作为枢轴。
int pivot = a[low];
int i = low, j = high; while (i < j) {
// 从右到左,寻找首个小于pivot的元素。
while (a[j] >= pivot && i < j) {
j--;
} // 执行到此,j已指向从右端起首个小于或等于pivot的元素。
// 执行替换。
a[i] = a[j]; // 从左到右,寻找首个大于pivot的元素。
while (a[i] <= pivot && i < j) {
i++;
} // 执行到此,i已指向从左端起首个大于或等于pivot的元素。
// 执行替换。
a[j] = a[i];
} // 退出while循环,执行至此,必定是i=j的情况。
// i(或j)指向的即是枢轴的位置,定位该趟排序的枢轴并将该位置返回。
a[i] = pivot; return i;
} void QuickSort(int a[], int low, int high) {
if (low >= high) {
return;
} int pivot = QuickSortOnce(a, low, high); // 对枢轴的左端进行排序。
QuickSort(a, low, pivot - ); // 对枢轴的右端进行排序。
QuickSort(a, pivot + , high);
} int EvaluateMedian(int a[], int n) {
QuickSort(a, , n - ); if (n % != ) {
return a[n / ];
} else {
return (a[n / ] + a[n / - ]) / ;
}
} int main() {
int a[] = {-, , , , ,, , , , , };
cout << EvaluateMedian(a, ) << endl;
return ;
}

c++求中位数的更多相关文章

  1. POJ 2388 Who's in the Middle(水~奇数个数排序求中位数)

    题目链接:http://poj.org/problem?id=2388 题目大意: 奇数个数排序求中位数 解题思路:看代码吧! AC Code: #include<stdio.h> #in ...

  2. 线性求中位数 poj2388

    在做uva11300时,遇到了n < 1000 000的中位数,就看了一下线性求中位数. 该算法的最差时间复杂度为O(N^2),期望时间复杂度为O(N),证明推理详见算法导论P110. 和快排的 ...

  3. URAL 1306 - Sequence Median 小内存求中位数

    [题意]给出n(1~250000)个数(int以内),求中位数 [题解]一开始直接sort,发现MLE,才发现内存限制1024k,那么就不能开int[250000]的数组了(4*250000=1,00 ...

  4. UVA 10057 A mid-summer night's dream. 仲夏夜之梦 求中位数

    题意:求中位数,以及能成为中位数的数的个数,以及选择不同中位数中间的可能性. 也就是说当数组个数为奇数时,中位数就只有一个,中间那个以及中位数相等的数都能成为中位数,选择的中位数就只有一种可能:如果为 ...

  5. LeetCode题目----求中位数---标签:Array

    题目难度---困难 题目要求: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个有序数组的中位数.要求算法的时间复杂度为 O(log (m+n)) . 思路:第一眼 ...

  6. 求中位数,O(n)的java实现【利用快速排序折半查找中位数】

    查找无序数组的中位数,要想时间复杂度为O(n)其实用计数排序就能很方便地实现,在此讨论使用快速排序进行定位的方法. 1.中位数定义 2.算法思想 3.Java代码实现 4.时间复杂度分析 5.附录 中 ...

  7. 堆实战(动态数据流求top k大元素,动态数据流求中位数)

    动态数据集合中求top k大元素 第1大,第2大 ...第k大 k是这群体里最小的 所以要建立个小顶堆 只需要维护一个大小为k的小顶堆 即可 当来的元素(newCome)> 堆顶元素(small ...

  8. 1005E1 Median on Segments (Permutations Edition) 【思维+无序数组求中位数】

    题目:戳这里 百度之星初赛原题:戳这里 题意:n个不同的数,求中位数为m的区间有多少个. 解题思路: 此题的中位数就是个数为奇数的数组中,小于m的数和大于m的数一样多,个数为偶数的数组中,小于m的数比 ...

  9. 两个有序数组求中位数log(m+n)复杂度

    leetcode 第4题 中位数技巧: 对于长度为L的有序数组,它的中位数是(a[ceil((L+1)/2)]+a[floor((L+1)/2)])/2 算法原理: 类似三分法求极值 两个人都前进,谁 ...

  10. O(n)求中位数和第k大数

    解题关键:模板与思路.面试题 #include<cstdio> #include<cstring> #include<algorithm> #include< ...

随机推荐

  1. 从Excel粘到Word的图片只有下面一半

    把图片粘贴到WORD上为什么只显示最底下一部分? 出现此故障的原因,有可能是设置为固定值的文档行距小于图形的高度,从而导致插入的图形只显示出了一部分.所以要调整图片的段落格式中的行间距. 解决方法 选 ...

  2. JS中判断一个数组是否有相同数据的

    页面中有多个<select> $("select").each(function(){ str.push($(this).val());}); // join() 方法 ...

  3. D0g3_Trash_Pwn_Writeup

    Trash Pwn 下载文件 1 首先使用checksec查看有什么保护 可以发现,有canary保护(Stack),堆栈不可执行(NX),地址随机化没有开启(PIE) 2 使用IDA打开看看 mai ...

  4. python学习笔记(十六)python操作redis数据库

    Redis是一个key-value存储系统,它支持丰富的数据类型,如:string.list.set.zset(sorted set).hash. Redis特点 Redis以内存作为数据存储介质,所 ...

  5. Angular:OnPush变化检测策略介绍

    在OnPush策略下,Angular不会运行变化检测(Change Detection ),除非组件的input接收到了新值.接收到新值的意思是,input的值或者引用发生了变化.这样听起来不好理解, ...

  6. Python Web框架本质——Python Web开发系列一

    前言:了解一件事情本质的那一瞬间总能让我获得巨大的愉悦感,希望这篇文章也能帮助到您. 目的:本文主要简单介绍Web开发中三大基本功能:Socket实现.路由系统.模板引擎渲染. 进入正题. 一. 基础 ...

  7. NOIp 数学 (小学奥数)

    Basic knowledge \[ C_n^m=\frac{n!}{m!(n - m)!} \] 快速幂 // Pure Quickpow inline int qpow(int n, int m, ...

  8. LintCode之最长单词

    题目描述: 分析:先建一个数组s用来存储每个字符串的长度,然后遍历数组s得到最大的数max,这个数就是词典中的最长单词的长度,由于可能有多个长度相等的单词,所以要循环整个词典,当一个单词的长度等于ma ...

  9. 面向对象编程思想(OOP)(转发)

    本文我将从面向对象编程思想是如何解决软件开发中各种疑难问题的角度,来讲述我们面向对象编程思想的理解,梳理面向对象四大基本特性.七大设计原则和23种设计模式之间的关系. 软件开发中疑难问题: 软件复杂庞 ...

  10. Vue通信、传值的多种方式,详解(都是干货)

    Vue通信.传值的多种方式,详解(都是干货) 可参考博客: https://blog.csdn.net/qq_35430000/article/details/79291287