题意:

思路:

【问题分析】

费用流问题。

【建模方法】

把所有仓库看做二分图中顶点Xi,所有零售商店看做二分图中顶点Yi,建立附加源S汇T。

1、从S向每个Xi连一条容量为仓库中货物数量ai,费用为0的有向边。

2、从每个Yi向T连一条容量为商店所需货物数量bi,费用为0的有向边。

3、从每个Xi向每个Yj连接一条容量为无穷大,费用为cij的有向边。

求最小费用最大流,最小费用流值就是最少运费,求最大费用最大流,最大费用流值就是最多运费。

【建模分析】

把每个仓库想象成一个中转站,由源点运来ai单位货物,运费为0,每个商店也为一个中转站,运向目标汇点bi单位货物。每个仓库和零售商店之间有一条道路,容量为无穷大,费用为单位运费cij。求从源

点到汇点的费用流,就是运费。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int,int> PII;
typedef pair<ll,ll> Pll;
typedef vector<int> VI;
typedef vector<PII> VII;
typedef pair<ll,ll>P;
#define N 100010
#define M 1000000
#define INF 1e9
#define fi first
#define se second
#define MP make_pair
#define pb push_back
#define pi acos(-1)
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,b) for(int i=(int)a;i<=(int)b;i++)
#define per(i,a,b) for(int i=(int)a;i>=(int)b;i--)
#define lowbit(x) x&(-x)
#define Rand (rand()*(1<<16)+rand())
#define id(x) ((x)<=B?(x):m-n/(x)+1)
#define ls p<<1
#define rs p<<1|1 const ll MOD=1e9+,inv2=(MOD+)/;
double eps=1e-;
int dx[]={-,,,};
int dy[]={,,-,}; int head[N],vet[N],len1[N],len2[N],nxt[N],dis[N],q[N],inq[N],a[N],b[N],c[][],
pre[N][],s,S,T,tot,ans1,ans2,n,m; int read()
{
int v=,f=;
char c=getchar();
while(c<||<c) {if(c=='-') f=-; c=getchar();}
while(<=c&&c<=) v=(v<<)+v+v+c-,c=getchar();
return v*f;
} void add(int a,int b,int c,int d)
{
nxt[++tot]=head[a];
vet[tot]=b;
len1[tot]=c;
len2[tot]=d;
head[a]=tot; nxt[++tot]=head[b];
vet[tot]=a;
len1[tot]=;
len2[tot]=-d;
head[b]=tot;
} void addedge()
{
tot=;
rep(i,,s) head[i]=;
rep(i,,n) add(S,i,a[i],);
rep(i,,m) add(i+n,T,b[i],);
rep(i,,n)
rep(j,,m) add(i,j+n,INF,c[i][j]);
} int spfa1()
{
rep(i,,s)
{
dis[i]=INF;
inq[i]=;
}
int t=,w=;
q[]=S; dis[S]=; inq[S]=;
while(t<w)
{
t++; int u=q[t%(s+)]; inq[u]=;
int e=head[u];
while(e)
{
int v=vet[e];
if(len1[e]&&dis[u]+len2[e]<dis[v])
{
dis[v]=dis[u]+len2[e];
pre[v][]=u;
pre[v][]=e;
if(!inq[v])
{
w++; q[w%(s+)]=v; inq[v]=;
}
}
e=nxt[e];
}
}
if(dis[T]==INF) return ;
return ;
} int spfa2()
{
rep(i,,s)
{
dis[i]=-INF;
inq[i]=;
}
int t=,w=;
q[]=S; dis[S]=; inq[S]=;
while(t<w)
{
t++; int u=q[t%(s+)]; inq[u]=;
int e=head[u];
while(e)
{
int v=vet[e];
if(len1[e]&&dis[u]+len2[e]>dis[v])
{
dis[v]=dis[u]+len2[e];
pre[v][]=u;
pre[v][]=e;
if(!inq[v])
{
w++; q[w%(s+)]=v; inq[v]=;
}
}
e=nxt[e];
}
}
if(dis[T]==-INF) return ;
return ;
} void mcf()
{
int k=T;
int t=INF;
while(k!=S)
{
int e=pre[k][];
t=min(t,len1[e]);
k=pre[k][];
}
ans1+=t;
k=T;
while(k!=S)
{
int e=pre[k][];
len1[e]-=t;
len1[e^]+=t;
ans2+=t*len2[e];
k=pre[k][];
}
} void solve1()
{
addedge();
ans1=ans2=;
while(spfa1()) mcf();
printf("%d\n",ans2);
} void solve2()
{
addedge();
ans1=ans2=;
while(spfa2()) mcf();
printf("%d\n",ans2);
} int main()
{
//freopen("1.in","r",stdin);
n=read(),m=read();
s=n+m,S=++s,T=++s;
rep(i,,n) a[i]=read();
rep(i,,m) b[i]=read();
rep(i,,n)
rep(j,,m) c[i][j]=read();
solve1();
solve2();
}

【PowerOJ1752&网络流24题】运输问题(费用流)的更多相关文章

  1. Cogs 739. [网络流24题] 运输问题(费用流)

    [网络流24题] 运输问题 ★★ 输入文件:tran.in 输出文件:tran.out 简单对比 时间限制:1 s 内存限制:128 MB «问题描述: «编程任务: 对于给定的m 个仓库和n 个零售 ...

  2. Cogs 461. [网络流24题] 餐巾(费用流)

    [网络流24题] 餐巾 ★★★ 输入文件:napkin.in 输出文件:napkin.out 简单对比 时间限制:5 s 内存限制:128 MB [问题描述] 一个餐厅在相继的N天里,第i天需要Ri块 ...

  3. 网络流24题 ——运输问题 luogu 4015

    题目描述:这里 题面已经提示我们这是费用流了 那么由源点向所有仓库连边,容量为仓库原有货物量,费用为0 然后由所有零售商店向汇点连边,容量为一个零售商店的需求量,费用为0 最后由仓库向零售商店连边,容 ...

  4. 【费用流】【网络流24题】【cogs 739】运输问题

    739. [网络流24题] 运输问题 ★★ 输入文件:tran.in 输出文件:tran.out 简单对照 时间限制:1 s 内存限制:128 MB «问题描写叙述: «编程任务: 对于给定的m 个仓 ...

  5. Libre 6011 「网络流 24 题」运输问题 (网络流,最小费用最大流)

    Libre 6011 「网络流 24 题」运输问题 (网络流,最小费用最大流) Description W 公司有m个仓库和n个零售商店.第i个仓库有\(a_i\)个单位的货物:第j个零售商店需要\( ...

  6. LIbreOJ #6011. 「网络流 24 题」运输问题 最小费用最大流

    #6011. 「网络流 24 题」运输问题 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  7. 【网络流24题】最长k可重线段集(费用流)

    [网络流24题]最长k可重线段集(费用流) 题面 Cogs的数据有问题 Loj 洛谷 题解 这道题和最长k可重区间集没有区别 只不过费用额外计算一下 但是,还是有一点要注意的地方 这里可以是一条垂直的 ...

  8. 【网络流24题】最长k可重区间集(费用流)

    [网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...

  9. Libre 6013 「网络流 24 题」负载平衡 (网络流,最小费用最大流)

    Libre 6013 「网络流 24 题」负载平衡 (网络流,最小费用最大流) Description G 公司有n 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使n ...

随机推荐

  1. .net core 学习小结之 自定义JWT授权

    自定义token的验证类 using System; using System.Collections.Generic; using System.IO; using System.Linq; usi ...

  2. 第九周课程总结&实验报告七

    实验任务详情: 完成火车站售票程序的模拟. 要求: (1)总票数1000张: (2)10个窗口同时开始卖票: (3)卖票过程延时1秒钟: (4)不能出现一票多卖或卖出负数号票的情况. package ...

  3. [DS+Algo] 002 一维表结构

    目录 1. 顺序表 1.1 分类 1.2 实现方式 1.3 扩容问题 1.4 操作 2. 链表 2.1 分类 2.2 链表相关操作 2.3 链表 VS 顺序表 3. 关于代码实现 1. 顺序表 1.1 ...

  4. 【转】sql server数据收集和监控

    转自:https://www.cnblogs.com/zhijianliutang/p/4476403.html 相关系列: https://www.cnblogs.com/zhijianliutan ...

  5. Oracle Replace函数的简单使用

      REPLACE ( char, search_string [, replace_string]) 如果没有指定replace_string 变量的值,那么当发现search_string 变量的 ...

  6. HDU 1864 最大报销额 0-1背包

    HDU 1864 最大报销额 0-1背包 题意 现有一笔经费可以报销一定额度的发票.允许报销的发票类型包括买图书(A类).文具(B类).差旅(C类),要求每张发票的总额不得超过1000元,每张发票上, ...

  7. 6-3 如何解析简单的XML文档

    元素节点.元素树 >>> from xml.etree.ElementTree import parse >>> help(parse) Help on funct ...

  8. html中的dl,dt,dd标签

    html <dl> <dt> <dd>是一组合标签,使用了dt dd最外层就必须使用dl包裹,此组合标签我们也又叫表格标签,与table表格类似组合标签,故名我们也 ...

  9. vue项目1-pizza点餐系统11-设计menu页面

    菜单的页面设计是基于bootstrap实现的,主要用到的是table标签,其中获取data数据用到遍历. <template> <div class=""> ...

  10. JavaScript回顾

    JavaScript是Web编程语言. JavaScript是一种基于对象的脚本语言 它是解释执行的 在客户端的浏览器中运行 可以被嵌入HTML文件中 代码以纯文本的形式存储在文件中 可以使用任何一种 ...