题目大意:

求序列的区间第k大

基本思路:

因为我根本就没有思路,知道这是主席树,我就去学了下,在b站上看了uestc的教学视频,然后看了一篇博客,博客http://www.cnblogs.com/Empress/p/4652449.html,我觉得理解的无修改主席树差不多了,也没那么难。下面代码是按照b站上来的,我很喜欢他的离散化方式,不过我不喜欢他的代码风格。

下面阐述我所理解的主席树的基本思路和细节:

转自:http://www.cnblogs.com/Empress/p/4652449.html

这种求区间第k(大)小的题目

最容易想到的做法就是对于每个询问,对[l, r]区间排个序,输出第k小,这样的复杂度是O(m×nlognm×nlogn)

大家都很容易想到排序,但是对于每个询问每个区间排序的代价太大了...

再想想,让我们加入一些线段树的思想,

要求第k小,也就是与个数相关,那么我们可以 以[l,r]区间内的数的个数来建立一棵线段树

结点的值是数的个数,当我们要找第k小的数时,若左子树大于k,那么很显然第k小的数在左子树中;若左子树小于k,那么第k小的数在右子树中

建树的复杂度是O(nlogN),查询的复杂度是O(logN)      (这里的N是不相同数的数量)

若我们仍对每个查询建树,那么复杂度丝毫没有降低(反而提高了),那有没有什么办法可以不要每次查询都建树呢?

(让我们联想一下前缀和) 假设我们知道[1, l-1]之间有多少个数比第k小的数小,那么我们只要减去这些数之后在[1, r]区间内第k小的数即是[l, r]区间内的第k小数

更确切的说,我们要求[l, r]区间内的第k小数  可以 用以[1, r]建立的线段树去减去以[1, l-1] 建立的线段树

这样能够减的条件是这两棵树必须是同构的。

若是不太明白, 我们来举个例子:

如有序列  1 2 5 1 3 2 2 5 1 2

我们要求 [5,10]第5小的数

(数列中不存在4、6、7、8 但根据原理就都写出来了,为方便理解,去掉了hash的步骤,实际的代码中其实只要一棵4个叶子节点的树即可)

(红色的为个数)

我们建立的[1, l-1] (也就是[1, 4])之间的树为

[1, r]也就是[1, 10]的树为

两树相减得到

我们来找第5小的数:

发现左子树为5  所以第5小的数在左边, 再往下(左4右1) 发现左边小于5了 ,所以第5小的数在右边 所以第5小的数就是3了

同样的,我们只要建立[1, i] (i是1到n之间的所有值)的所有树,每当询问[l, r]的时候,只要用[1, r]的树减去[1, l-1]的树,再找第k小就好啦

我们将这n个树看成是建立在一个大的线段树里的,也就是这个线段树的每个节点都是一个线段树( ——这就是主席树)

最初所有的树都是空树,我们并不需要建立n个空树,只要建立一个空树,也就是不必每个节点都建立一个空树

插入元素时,我们不去修改任何的结点,而是返回一个新的树( ——这就是函数式线段树)

因为每个节点都不会被修改,所以可以不断的重复用,因此插入操作的复杂度为O(logn)

总的复杂度为O((n+m)lognlogN)   (听说 主席树的芭比说 加上垃圾回收, 可以减少一个log~~~ 然而这只是听说)

你以为这样就结束了吗!!

你没有发现这样空间大到爆炸吗!!!

你在每个节点都建了一个线!段!树!这不MLE才有鬼呢!!!

那怎么办呢?

TiTi表示一棵[1, i]区间的线段树

那么TiTi与Ti−1Ti−1的区别就只有当前插入的这个元素aiai以及它的父亲以及他父亲的父亲以及他父亲的父亲的父亲...

也就是改变的就只有他和他上面logn个数

所以,我们并不需要建一整棵树,我们只需要 单独建立logn个结点,跟Ti−1Ti−1连起来就好了

这样树的空间复杂度(NlogN)

个人认为关键是理解主席树保留了各个历史版本的线段树。

代码如下:

#include<vector>
#include<stack>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring> using namespace std; typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn =100000+10;
int n,m,cnt,root[maxn],a[maxn];
struct node{
int l,r,sum;
}T[maxn*40];
vector<int>vec;
int getid(int x){
return lower_bound(vec.begin(),vec.end(),x)-vec.begin()+1;
}
void update(int l,int r,int &x,int y,int pos){
//之所要用引用,是为了下面改变l,r等
T[++cnt]=T[y];
T[cnt].sum++;
x=cnt;
if(l==r){
return;
}
int mid=(l+r)/2;
if(mid>=pos){
update(l,mid,T[x].l,T[y].l,pos);
}else{
update(mid+1,r,T[x].r,T[y].r,pos);
}
}
int query(int l,int r,int x,int y,int k){
if(l==r){
return l;
}
int mid=(l+r)/2;
int sum=T[T[y].l].sum-T[T[x].l].sum;
//之所以是.l,见上面的例子
if(sum>=k){
return query(l,mid,T[x].l,T[y].l,k);
}else{
return query(mid+1,r,T[x].r,T[y].r,k-sum);
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
vec.push_back(a[i]);
}
sort(vec.begin(),vec.end());
vec.erase(unique(vec.begin(),vec.end()),vec.end());
for(int i=1;i<=n;i++){
update(1,n,root[i],root[i-1],getid(a[i]));
}
for(int i=1;i<=m;i++){
int x,y,k;
scanf("%d%d%d",&x,&y,&k);
printf("%d\n",vec[query(1,n,root[x-1],root[y],k)-1]);
//所以上面是访问了对应的历史版本的线段树
//因为之前离散化所以现在要还原回来 }
return 0;
}

  

  

poj 2104 无修改主席树的更多相关文章

  1. poj 2104 K-th Number 主席树+超级详细解释

    poj 2104 K-th Number 主席树+超级详细解释 传送门:K-th Number 题目大意:给出一段数列,让你求[L,R]区间内第几大的数字! 在这里先介绍一下主席树! 如果想了解什么是 ...

  2. SPOJ MKTHNUM & POJ 2104 - K-th Number - [主席树模板题]

    题目链接:http://poj.org/problem?id=2104 Description You are working for Macrohard company in data struct ...

  3. POJ 2104 K-th Number 主席树(区间第k大)

    题目链接: http://poj.org/problem?id=2104 K-th Number Time Limit: 20000MSMemory Limit: 65536K 问题描述 You ar ...

  4. poj 2104 K-th Number(主席树 视频)

    K-th Number 题意: 给你一些数,让你求一个区间内,第k大的数是多少. 题解: 主席树第一题,看的qsc视频写的,戳戳戳 学到了unique函数,他的作用是:把相邻的重复的放到后面,返回值是 ...

  5. POJ 2104 HDU 2665 主席树 解决区间第K大

    两道题都是区间第K大询问,数据规模基本相同. 解决这种问题, 可以采用平方划分(块状表)复杂度也可以接受,但是实际表现比主席树差得多. 这里大致讲一下我对主席树的理解. 首先,如果对于某个区间[L,R ...

  6. Poj 2104 K-th Number(主席树&&整体二分)

    K-th Number Time Limit: 20000MS Memory Limit: 65536K Case Time Limit: 2000MS Description You are wor ...

  7. POJ 2104 K-th Number 主席树

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> us ...

  8. [BZOJ3295] [Cqoi2011]动态逆序对(带修改主席树)

    题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序 ...

  9. 【bzoj1901】dynamic ranking(带修改主席树/树套树)

    题面地址(权限题) 不用权限题的地址 首先说说怎么搞带修改主席树? 回忆一般的kth问题,我们的主席树求的是前缀和,这样我们在目标区间的左右端点的主席树差分下就能求出kth. 那么我们如何支持修改操作 ...

随机推荐

  1. 快速失败(fail—fast)和 安全失败(fail—safe)

    快速失败(fail-fast) 在用迭代器遍历一个集合对象时,如果遍历过程中对集合对象的结构进行了修改(增加.删除),则会抛出Concurrent Modification Exception. 原理 ...

  2. 在项目中使用 Maven 私服

    #在项目中使用 Maven 私服 在 Maven settings.xml 中添加 Nexus 认证信息(servers 节点下): <server> <id>nexus-re ...

  3. "sorted()"中的"Key Functions"

    Pythonsorted()函数中可以加入key=<FUNCTION>参数.作用是每个元素在排序之前,先作为key=<FUNCTION>中FUNCTION的参数,用FUNCTI ...

  4. Linux任务计划at

    Linux任务计划at 一Linux任务计划介绍 Linux任务计划.周期性任务执行at:未来的某时间点执行一次任务batch:系统自行选择空闲时间去执行此处指定的任务cron:周期性运行某任务 二a ...

  5. SimpleDateFormat线程不安全原因及解决方案

    一. 线程不安全验证: /** * SimpleDateFormat线程安全测试 * 〈功能详细描述〉 * * @author 17090889 * @see [相关类/方法](可选) * @sinc ...

  6. SSH小应用

    1:Spring整合Hibernate <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE hi ...

  7. php explode()函数 语法

    php explode()函数 语法 作用:把字符串打散为数组 语法:explode(separator,string,limit)大理石机械构件 参数: 参数 描述 separator 必需.规定在 ...

  8. Word图片粘贴上传控件,直接粘贴图片到编辑器-DEDE

    很多时候我们用一些管理系统的时候,发布新闻.公告等文字类信息时,希望能很快的将word里面的内容直接粘贴到富文本编辑器里面,然后发布出来.减少排版复杂的工作量. 下面是借用百度doc 来快速实现这个w ...

  9. signer information does not match signer information of other classes in the same package

    报错日志: java.lang.SecurityException: class "org.bouncycastle.asn1.ASN1ObjectIdentifier"'s si ...

  10. post方式请求数据

    post方式请求数据 分析: 1.将请求方式改成post conn.setRequestMethod("POST"); 2.设置连接可以输出 conn.setDoOutput(tr ...