OpenCV2马拉松第9圈——再谈对照度(对照度拉伸,直方图均衡化)
- lookup table
- 对照度拉伸
- 直方图均衡化
for( int i = 0; i < I.rows; ++i)
for( int j = 0; j < I.cols; ++j )
I.at<uchar>(i,j) = 255 - I.at<uchar>(i,j);
大部分人应该都会这么做.或者:
for( i = 0; i < nRows; ++i){
p = I.ptr<uchar>(i);
for ( j = 0; j < nCols; ++j){
p[j] = 255 - p[j];
}
}
或者使用迭代器
MatIterator_<uchar> it, end;
for( it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it)
*it = 255 - *it;
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
Mat applyLookUp(const cv::Mat& image,const cv::Mat& lookup) {
Mat result;
cv::LUT(image,lookup,result);
return result;
}
int main( int, char** argv )
{
Mat image,gray;
image = imread( argv[1], 1 );
if( !image.data )
return -1;
cvtColor(image, gray, CV_BGR2GRAY);
Mat lut(1,256,CV_8U);
for (int i=0; i<256; i++) {
lut.at<uchar>(i)= 255-i;
}
Mat out = applyLookUp(gray,lut);
namedWindow("sample");
imshow("sample",out);
waitKey(0);
return 0;
}
第一种:On-The-Fly RA93.7878 milliseconds
另外一种:Efficient Way79.4717 milliseconds
看以下这个确定的过程:
Mat hist= getHistogram(image);
int imin= 0;
for( ; imin < histSize[0]; imin++ )
if (hist.at<float>(imin) > minValue)
break;
int imax= histSize[0]-1;
for( ; imax >= 0; imax-- )
if (hist.at<float>(imax) > minValue)
break;
一旦imin,imax确定下来。我们就能够填充lookup table了
Mat lookup(1, 256, CV_8U);
for (int i=0; i<256; i++) {
if (i < imin) lookup.at<uchar>(i)= 0;
else if (i > imax) lookup.at<uchar>(i)= 255;
else lookup.at<uchar>(i)= static_cast<uchar>(255.0*(i-imin)/(imax-imin)+0.5);
}
直方图均衡化
假设我有灰度级255的图像,可是都是属于[100,110]的灰度,图像对照度就非常低。我应该尽可能拉到整个[0。255]
public int[][] Histogram_Equalization(int[][] oldmat)
{
int[][] new_mat = new int[height][width];
int[] tmp = new int[256];
for(int i = 0;i < width;i++){
for(int j = 0;j < height;j++){
//System.out.println(oldmat[j][i]);
int index = oldmat[j][i];
tmp[index]++;
}
}
float[] C = new float[256];
int total = width*height;
//计算累积函数
for(int i = 0;i < 256 ; i++){
if(i == 0)
C[i] = 1.0f * tmp[i] / total;
else
C[i] = C[i-1] + 1.0f * tmp[i] / total;
}
for(int i = 0;i < width;i++){
for(int j = 0;j < height;j++){
new_mat[j][i] = (int)(C[oldmat[j][i]] * 255);
new_mat[j][i] = new_mat[j][i] + (new_mat[j][i] << 8) + (new_mat[j][i] << 16);
//System.out.println(new_mat[j][i]);
}
}
return new_mat;
}
因此,该算法更适合于改进图像的局部对照度以及获得很多其它的图像细节。
/*
* CLAHE
* 自适应直方图均衡化
*/
public int[][] AHE(int[][] oldmat,int pblock)
{
int block = pblock;
//将图像均匀分成等矩形大小,8行8列64个块是经常使用的选择
int width_block = width/block;
int height_block = height/block;
//存储各个直方图
int[][] tmp = new int[block*block][256];
//存储累积函数
float[][] C = new float[block*block][256];
//计算累积函数
for(int i = 0 ; i < block ; i ++)
{
for(int j = 0 ; j < block ; j++)
{
int start_x = i * width_block;
int end_x = start_x + width_block;
int start_y = j * height_block;
int end_y = start_y + height_block;
int num = i+block*j;
int total = width_block * height_block;
for(int ii = start_x ; ii < end_x ; ii++)
{
for(int jj = start_y ; jj < end_y ; jj++)
{
int index = oldmat[jj][ii];
tmp[num][index]++;
}
}
//裁剪操作
int average = width_block * height_block / 255;
int LIMIT = 4 * average;
int steal = 0;
for(int k = 0 ; k < 256 ; k++)
{
if(tmp[num][k] > LIMIT){
steal += tmp[num][k] - LIMIT;
tmp[num][k] = LIMIT;
}
}
int bonus = steal/256;
//hand out the steals averagely
for(int k = 0 ; k < 256 ; k++)
{
tmp[num][k] += bonus;
}
//计算累积分布直方图
for(int k = 0 ; k < 256 ; k++)
{
if( k == 0)
C[num][k] = 1.0f * tmp[num][k] / total;
else
C[num][k] = C[num][k-1] + 1.0f * tmp[num][k] / total;
}
}
}
int[][] new_mat = new int[height][width];
//计算变换后的像素值
//依据像素点的位置,选择不同的计算方法
for(int i = 0 ; i < width; i++)
{
for(int j = 0 ; j < height; j++)
{
//four coners
if(i <= width_block/2 && j <= height_block/2)
{
int num = 0;
new_mat[j][i] = (int)(C[num][oldmat[j][i]] * 255);
}else if(i <= width_block/2 && j >= ((block-1)*height_block + height_block/2)){
int num = block*(block-1);
new_mat[j][i] = (int)(C[num][oldmat[j][i]] * 255);
}else if(i >= ((block-1)*width_block+width_block/2) && j <= height_block/2){
int num = block-1;
new_mat[j][i] = (int)(C[num][oldmat[j][i]] * 255);
}else if(i >= ((block-1)*width_block+width_block/2) && j >= ((block-1)*height_block + height_block/2)){
int num = block*block-1;
new_mat[j][i] = (int)(C[num][oldmat[j][i]] * 255);
}
//four edges except coners
else if( i <= width_block/2 )
{
//线性插值
int num_i = 0;
int num_j = (j - height_block/2)/height_block;
int num1 = num_j*block + num_i;
int num2 = num1 + block;
float p = (j - (num_j*height_block+height_block/2))/(1.0f*height_block);
float q = 1-p;
new_mat[j][i] = (int)((q*C[num1][oldmat[j][i]]+ p*C[num2][oldmat[j][i]])* 255);
}else if( i >= ((block-1)*width_block+width_block/2)){
//线性插值
int num_i = block-1;
int num_j = (j - height_block/2)/height_block;
int num1 = num_j*block + num_i;
int num2 = num1 + block;
float p = (j - (num_j*height_block+height_block/2))/(1.0f*height_block);
float q = 1-p;
new_mat[j][i] = (int)((q*C[num1][oldmat[j][i]]+ p*C[num2][oldmat[j][i]])* 255);
}else if( j <= height_block/2 ){
//线性插值
int num_i = (i - width_block/2)/width_block;
int num_j = 0;
int num1 = num_j*block + num_i;
int num2 = num1 + 1;
float p = (i - (num_i*width_block+width_block/2))/(1.0f*width_block);
float q = 1-p;
new_mat[j][i] = (int)((q*C[num1][oldmat[j][i]]+ p*C[num2][oldmat[j][i]])* 255);
}else if( j >= ((block-1)*height_block + height_block/2) ){
//线性插值
int num_i = (i - width_block/2)/width_block;
int num_j = block-1;
int num1 = num_j*block + num_i;
int num2 = num1 + 1;
float p = (i - (num_i*width_block+width_block/2))/(1.0f*width_block);
float q = 1-p;
new_mat[j][i] = (int)((q*C[num1][oldmat[j][i]]+ p*C[num2][oldmat[j][i]])* 255);
}
//inner area
else{
int num_i = (i - width_block/2)/width_block;
int num_j = (j - height_block/2)/height_block;
int num1 = num_j*block + num_i;
int num2 = num1 + 1;
int num3 = num1 + block;
int num4 = num2 + block;
float u = (i - (num_i*width_block+width_block/2))/(1.0f*width_block);
float v = (j - (num_j*height_block+height_block/2))/(1.0f*height_block);
new_mat[j][i] = (int)((u*v*C[num4][oldmat[j][i]] +
(1-v)*(1-u)*C[num1][oldmat[j][i]] +
u*(1-v)*C[num2][oldmat[j][i]] +
v*(1-u)*C[num3][oldmat[j][i]]) * 255);
}
new_mat[j][i] = new_mat[j][i] + (new_mat[j][i] << 8) + (new_mat[j][i] << 16);
}
}
return new_mat;
}
-
C++: void equalizeHist(InputArray src,
OutputArray dst)
-
- src – Source 8-bit single channel image.
- dst – Destination image of the same size and type as src .
TAT,这是眼下为止最简单的 API了
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
Mat applyLookUp(const cv::Mat& image,const cv::Mat& lookup) {
Mat result;
cv::LUT(image,lookup,result);
return result;
}
class Histogram1D {
private:
int histSize[1]; // number of bins
float hranges[2]; // min and max pixel value
const float* ranges[1];
int channels[1];
public:
Histogram1D() {
histSize[0]= 256;
hranges[0]= 0.0;
hranges[1]= 255.0;
ranges[0]= hranges;
channels[0]= 0; // by default, we look at channel 0
}
Mat getHistogram(const cv::Mat &image) {
Mat hist;
calcHist(&image,1,channels,Mat(),hist,1,histSize,ranges);
return hist;
}
Mat getHistogramImage(const cv::Mat &image){
Mat hist= getHistogram(image);
double maxVal=0;
double minVal=0;
minMaxLoc(hist, &minVal, &maxVal, 0, 0);
Mat histImg(histSize[0], histSize[0],CV_8U,Scalar(255));
int hpt = static_cast<int>(0.9*histSize[0]);
for( int h = 0; h < histSize[0]; h++ ) {
float binVal = hist.at<float>(h);
int intensity = static_cast<int>(binVal*hpt/maxVal);
line(histImg,Point(h,histSize[0]),
Point(h,histSize[0]-intensity),
Scalar::all(0));
}
return histImg;
}
Mat stretch(const cv::Mat &image, int minValue=0) {
Mat hist= getHistogram(image);
int imin= 0;
for( ; imin < histSize[0]; imin++ )
if (hist.at<float>(imin) > minValue)
break;
int imax= histSize[0]-1;
for( ; imax >= 0; imax-- )
if (hist.at<float>(imax) > minValue)
break;
Mat lookup(1, 256, CV_8U);
for (int i=0; i<256; i++) {
if (i < imin) lookup.at<uchar>(i)= 0;
else if (i > imax) lookup.at<uchar>(i)= 255;
else lookup.at<uchar>(i)= static_cast<uchar>(255.0*(i-imin)/(imax-imin)+0.5);
}
Mat result;
result= applyLookUp(image,lookup);
return result;
}
};
int main( int, char** argv )
{
Mat image,gray;
image = imread( argv[1], 1 );
if( !image.data )
return -1;
cvtColor(image, gray, CV_BGR2GRAY);
namedWindow("original");
imshow("original",gray);
Histogram1D h;
Mat streteched = h.stretch(gray,100);
namedWindow("sample");
imshow("sample",streteched);
namedWindow("histogram1");
imshow("histogram1",h.getHistogramImage(gray));
namedWindow("histogram2");
imshow("histogram2",h.getHistogramImage(streteched));
waitKey(0);
return 0;
}
再来看直方图均衡化代码
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
using namespace cv;
using namespace std;
int main( int, char** argv )
{
Mat src, dst;
const char* source_window = "Source image";
const char* equalized_window = "Equalized Image";
/// Load image
src = imread( argv[1], 1 );
if( !src.data )
{ cout<<"Usage: ./Histogram_Demo <path_to_image>"<<endl;
return -1;
}
/// Convert to grayscale
cvtColor( src, src, CV_BGR2GRAY );
/// Apply Histogram Equalization
equalizeHist( src, dst );
/// Display results
namedWindow( source_window, CV_WINDOW_AUTOSIZE );
namedWindow( equalized_window, CV_WINDOW_AUTOSIZE );
imshow( source_window, src );
imshow( equalized_window, dst );
/// Wait until user exits the program
waitKey(0);
return 0;
OpenCV2马拉松第9圈——再谈对照度(对照度拉伸,直方图均衡化)的更多相关文章
- OpenCV2马拉松第15圈——边缘检測(Laplace算子,LOG算子)
收入囊中 拉普拉斯算子 LOG算子(高斯拉普拉斯算子) OpenCV Laplacian函数 构建自己的拉普拉斯算子 利用拉普拉斯算子进行图像的锐化 葵花宝典 在OpenCV2马拉松第14圈--边缘检 ...
- OpenCV2马拉松第17圈——边缘检測(Canny边缘检測)
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g 收入囊中 利用OpenCV Canny函数进行边缘检測 掌握Canny算法基本理论 ...
- openCV2马拉松第18圈——坐标变换
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g 收入囊中 仿射变换 坐标映射 利用坐标映射做一些效果,例如以下 watermark/ ...
- OpenCV2马拉松第22圈——Hough变换直线检測原理与实现
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/27220445 收入囊中 Hough变换 概率Ho ...
- OpenCV2马拉松第14圈——边缘检測(Sobel,prewitt,roberts)
收入囊中 差分在边缘检測的角色 Sobel算子 OpenCV sobel函数 OpenCV Scharr函数 prewitt算子 Roberts算子 葵花宝典 差分在边缘检測究竟有什么用呢?先看以下的 ...
- OpenCV2马拉松第2圈——读写图片
收入囊中 用imread读取图片 用nameWindow和imshow展示图片 cvtColor彩色图像灰度化 imwrite写图像 Luv色彩空间转换 初识API 图像读取接口 image = im ...
- OpenCV2马拉松第10圈——直方图反向投影(back project)
收入囊中 灰度图像的反向投影 彩色图像的反向投影 利用反向投影做object detect 葵花宝典 什么是反向投影?事实上没有那么高大上! 在上一篇博文学到,图像能够获得自己的灰度直方图. 反向投影 ...
- openCV2马拉松第19圈——Harris角点检測(自己实现)
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/26824529 收入囊中 使用OpenCV的con ...
- OpenCV2马拉松第5圈——线性滤波
收入囊中 这里的非常多内容事实上在我的Computer Vision: Algorithms and ApplicationsのImage processing中都有讲过 相关和卷积工作原理 边界处理 ...
随机推荐
- redis学习(二)
简单了解一下 1.build.gradle中添加 依赖 org.springframework.boot:spring-boot-starter-data-redis //定义依赖:声明项目中需要哪 ...
- iviewUI框架,使用table表格内render下拉框select被遮盖问题
使用props:{ transfer:true },即可 1.原本代码:
- vue 中使用 watch 出现了如下的报错
vue 中使用 watch 出现了如下的报错 报错: Method "watch" has type "object" in the component def ...
- Vue实例与组件的关系
所有的 Vue 组件都是 Vue 实例,可以看成Vue组件就是Vue实例的扩展. <div id="app"> <child></child> ...
- EXCUTE JAVAScript点击事件
# Execute Javascript document.getElementsByClassName('chooseFile')[${index}].arguments[0].click(); # ...
- vuex的配置使用
为什么使用vuex? vuex主要是是做数据交互,父子组件传值可以很容易办到,但是兄弟组件间传值(兄弟组件下又有父子组件),或者大型spa单页面框架项目,页面多并且一层嵌套一层的传值,异常麻烦,用vu ...
- Flutter日曆國際化
Flutter自带的日期选择器是showDatePicker,时间选择器是showTimePicker. 这两个选择器默认的显示效果都是英文的,我们是在中国,那么就需要将其显示成中文版的,这就涉及到F ...
- 10.VScode Debug——2019年12月12日
title: vscode debug date: "2019-09-17 16:17:16" tags: 技巧 categories: 技术驿站 1.为什么需要调试 写了很多行代 ...
- pylab和pyplot的区别
Pylab combines the functionality of pyplot with the capabilities of NumPy in a single namespace, and ...
- OpenFOAM4.0安装教程
Ubuntu 14.04以上版本支持pack安装. 1. add repository sudo add-apt-repository "http://dl.openfoam.org/ubu ...