多线性方程组迭代算法——Jacobi迭代算法的Python实现
多线性方程(张量)组迭代算法的原理请看这里:若想看原理部分请留言,不方便公开分享
Gauss-Seidel迭代算法:多线性方程组迭代算法——Gauss-Seidel迭代算法的Python实现
import numpy as np
import time
1.1 Jacobi迭代算法
def Jacobi_tensor_V2(A,b,Delta,m,n,M):
start=time.perf_counter()#开始计时
find=0#用于标记是否在规定步数内收敛
X=np.ones(n)#迭代起始点
x=np.ones(n)#用于存储迭代的中间结果
d=np.ones(n)#用于存储Ax**(m-2)的对角线部分
m1=m-1
m2=2-m
for i in range(M):
print('X',X)
a=np.copy(A)
#得Ax**(m-2)
for j in range(m-2):
a=np.dot(a,X)
#得d 和 (2-m)Dx**(m-2)+(L'+U')x**(m-2)
for j in range(n):
d[j]=a[j,j]
a[j,j]=m2*a[j,j]
#迭代更新
for j in range(n):
x[j]=(b[j]-np.dot(a[j],X))/(m1*d[j])
#判断是否满足精度要求
if np.max(np.fabs(X-x))<Delta:
find=1
break
X=np.copy(x)
end=time.perf_counter()#结束计时
print('时间:',end-start)
print('迭代',i)
return X,find,i,end-start
1.2 张量A的生成函数和向量b的生成函数:
def Creat_A(m,n):#生成张量A
size=np.full(m, n)
X=np.ones(n)
while 1:
#随机生成给定形状的张量A
A=np.random.randint(-49,50,size=size)
#判断Dx**(m-2)是否非奇异,如果是,则满足要求,跳出循环
D=np.copy(A)
for i1 in range(n):
for i2 in range(n):
if i1!=i2:
D[i1,i2]=0
for i in range(m-2):
D=np.dot(D,X)
det=np.linalg.det(D)
if det!=0:
break
#将A的对角面张量扩大十倍,使对角面占优
for i1 in range(n):
for i2 in range(n):
if i1==i2:
A[i1,i2]=A[i1,i2]*10
print('A:')
print(A)
return A #由A和给定的X根据Ax**(m-1)=b生成向量b
def Creat_b(A,X,m):
a=np.copy(A)
for i in range(m-1):
a=np.dot(a,X)
print('b:')
print(a)
return a
1.3 对称张量S的生成函数:
def Creat_S(m,n):#生成对称张量B
size=np.full(m, n)
S=np.zeros(size)
print('S',S)
for i in range(4):
#生成n为向量a
a=np.random.random(n)*np.random.randint(-5,6)
b=np.copy(a)
#对a进行m-1次外积,得到秩1对称张量b
for j in range(m-1):
b=outer(b,a)
#将不同的b叠加得到低秩对称张量S
S=S+b
print('S:')
print(S)
return S
def outer(a,b):
c=[]
for i in b:
c.append(i*a)
return np.array(c)
return a
1.4 实验一
def test_1():
Delta=0.01#精度
m=3#A的阶数
n=3#A的维数
M=200#最大迭代步数
X_real=np.array( [2,3,4])
A=Creat_A(m,n)
b=Creat_b(A,X_real,m)
Jacobi_tensor_V2(A,b,Delta,m,n)
多线性方程组迭代算法——Jacobi迭代算法的Python实现的更多相关文章
- 线性方程组迭代算法——Jacobi迭代算法的python实现
原理: 请看本人博客:线性方程组的迭代求解算法——原理 代码: import numpy as np max=100#迭代次数上限 Delta=0.01 m=2#阶数:矩阵为2阶 n=3#维数:3X3 ...
- 多线性方程组迭代算法——Gauss-Seidel迭代算法的Python实现
多线性方程组(张量)迭代算法的原理请看这里:原理部分请留言,不方便公开分享 Jacobi迭代算法里有详细注释:多线性方程组迭代算法——Jacobi迭代算法的Python实现 import numpy ...
- ICP(迭代最近点)算法
图像配准是图像处理研究领域中的一个典型问题和技术难点,其目的在于比较或融合针对同一对象在不同条件下获取的图像,例如图像会来自不同的采集设备,取自不同的时间,不同的拍摄视角等等,有时也需要用到针对不同对 ...
- 算法 递归 迭代 动态规划 斐波那契数列 MD
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...
- flink PageRank详解(批量迭代的页面排名算法的基本实现)
1.PageRank算法原理 2.基本数据准备 /** * numPages缺省15个测试页面 * * EDGES表示从一个pageId指向相连的另外一个pageId */ public clas ...
- 迭代硬阈值类算法总结||IHT/NIHT/CGIHT/HTP
迭代硬阈值类(IHT)算法总结 斜风细雨作小寒,淡烟疏柳媚晴滩.入淮清洛渐漫漫. 雪沫乳花浮午盏,蓼茸蒿笋试春盘.人间有味是清欢. ---- 苏轼 更多精彩内容请关注微信公众号 "优化与算法 ...
- ICP算法(迭代最近点)
参考博客:http://www.cnblogs.com/21207-iHome/p/6034462.html 最近在做点云匹配,需要用c++实现ICP算法,下面是简单理解,期待高手指正. ICP算法能 ...
- 吴裕雄 python 机器学习——半监督学习标准迭代式标记传播算法LabelPropagation模型
import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import d ...
- OpenACC 书上的范例代码(Jacobi 迭代),part 3
▶ 使用Jacobi 迭代求泊松方程的数值解 ● 使用 data 构件,强行要求 u0 仅拷入和拷出 GPU 各一次,u1 仅拷入GPU 一次 #include <stdio.h> #in ...
随机推荐
- vue 中使用 watch 出现了如下的报错
vue 中使用 watch 出现了如下的报错 报错: Method "watch" has type "object" in the component def ...
- CentOS7.6系统安装zabbix3.4.8客户端
一. 准备安装包 将本地的zabbix-3.4.8软件包上传至服务器, 二. 安装依赖包 安装依赖包:yum install gcc* pcre* psmisc -y 三. 安 ...
- 《x的奇幻之旅》:有趣的数学科普
本书是相对比较少见的数学方面的科普书.从最简单的阿拉伯数字.加减法,一直到概率统计.微积分.群论.拓扑.微分几何,每个主题都用几千字做一些深入浅出的介绍.写的相当的有趣. 在书中又一次看到这个有趣的事 ...
- 如何使用Excel绘制甘特图
摘自:http://www.mifengtd.cn/articles/how-to-create-a-gantt-chart-in-excel.html 再造<优秀的时间管理和项目管理工具> ...
- css----overflow(布局)
CSS overflow 属性用于控制内容溢出元素框时显示的方式. CSS Overflow CSS overflow 属性可以控制内容溢出元素框时在对应的元素区间内添加滚动条. overflow属性 ...
- JS的数据类型及分类
JS分两种数据类型: 基本数据类型: Number.String.Boolean.Null. Undefined.Symbol(ES6) 这些类型可以直接操作保存在变量中的实际值. 引用数据类型: O ...
- 4412 最简Linux驱动
最简Linux驱动 必备的头文件 • Linux头文件位置– 类似#include <linux/module.h>的头文件,它们是在Linux源码目录下的include/linux/mo ...
- 【Linux】运维常用命令
1.查看进程 ps -ef 如果需要查看特定的进程,比如redis的 ps -ef | grep redis 2.强制杀死进程 kill -9 进程id 3.忽略输出后台启动 nohup ./red ...
- 汉诺塔IX
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=76447#problem/E 汉诺塔IX Time Limit:1000MS Me ...
- Hibernate:More than one row with the given identifier was found解决办法
今天写一个Action 通过 HQL 查询一个表 出现异常 “More than one row with the given identifier was found” 问题原因: 数据库出现数据异 ...