Desert King
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions:33847   Accepted: 9208

Description

David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way.

After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.

His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line.

As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

Sample Input

4
0 0 0
0 1 1
1 1 2
1 0 3
0

Sample Output

1.000

题意

有带权图G, 对于图中每条边e[i], 都有benifit[i](收入)和cost[i](花费), 我们要求的是一棵生成树T, 它使得 ∑(benifit[i]) / ∑(cost[i]), i∈T 最大(或最小).

这显然是一个具有现实意义的问题.

题解

解法之一 0-1分数规划

设x[i]等于1或0, 表示边e[i]是否属于生成树.

则我们所求的比率 r = ∑(benifit[i] * x[i]) / ∑(cost[i] * x[i]), 0≤i<m .

为了使 r 最大, 设计一个子问题---> 让 z = ∑(benifit[i] * x[i]) - l * ∑(cost[i] * x[i]) = ∑(d[i] * x[i]) 最大 (d[i] = benifit[i] - l * cost[i]) , 并记为z(l). 我们可以兴高采烈地把z(l)看做以d为边权的最大生成树的总权值.

然后明确两个性质:

 1.  z单调递减

  证明: 因为cost为正数, 所以z随l的减小而增大.

 2.  z( max(r) ) = 0

  证明: 若z( max(r) ) < 0, ∑(benifit[i] * x[i]) - max(r) * ∑(cost[i] * x[i]) < 0, 可化为 max(r) < max(r). 矛盾;

          若z( max(r) ) >= 0, 根据性质1, 当z = 0 时r最大.

到了这个地步, 七窍全已打通, 喜欢二分的上二分, 喜欢Dinkelbach的就Dinkelbach.

复杂度

时间 O( O(MST) * log max(r) )

空间 O( O(MST) )

C++代码

二分法

/*
*@Author: Agnel-Cynthia
*@Language: C++
*/
//#include <bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<vector>
#include<bitset>
#include<queue>
#include<deque>
#include<stack>
#include<cmath>
#include<list>
#include<map>
#include<set>
//#define DEBUG
#define RI register int
#define endl "\n"
using namespace std;
typedef long long ll;
//typedef __int128 lll;
const int N=+;
const int M=+;
const int MOD=1e9+;
const double PI = acos(-1.0);
const double EXP = 1E-;
const int INF = 0x3f3f3f3f;
//int t,n,m,k,p,l,r,u,v;
const int maxn = ;
//ll a[maxn],b[maxn]; struct node
{
int x , y ,z ;
}edge[maxn]; int n ; double mp[maxn][maxn]; double dis(double x1 ,double y1,double x2,double y2){
return sqrt(1.0*(x1-x2) * (x1 - x2) + 1.0 * (y1 - y2) * (y1 - y2));
} void creat(){
for(int i = ;i <= n ;i ++){
for(int j = ;j <= n ; j++){
mp[i][j] = dis(edge[i].x,edge[i].y,edge[j].x,edge[j].y);
}
}
} double d[maxn];
bool vis[maxn]; double prime(double mid){
memset(vis,,sizeof vis);
for(int i = ;i <= n ; i++){
d[i] = abs(edge[].z - edge[i].z) - mp[][i] * mid;
}
vis[] = true;
double ans = ;
for(int i = ;i < n ; i++){
int v = -;double MIN = INF;
for(int j = ;j <= n ; j++){
if(MIN >= d[j] && !vis[j]){
v = j;
MIN = d[j];
}
}
if(v == -)
break;
vis[v] = true;
ans += MIN;
for(int j = ;j <= n ; j++){
if(!vis[j] && (fabs(edge[v].z - edge[j].z) - mp[v][j] * mid) < d[j])
d[j] = (fabs(edge[v].z - edge[j].z) - mp[v][j] * mid);
}
}
return ans ;
} int main()
{
#ifdef DEBUG
freopen("input.in", "r", stdin);
//freopen("output.out", "w", stdout);
#endif
// ios::sync_with_stdio(false);
// cin.tie(0);
// cout.tie(0);
while(cin >> n && n){
for(int i = ;i <= n ; i++){
cin >> edge[i].x >> edge[i].y >> edge[i].z;
}
double l = , r = 40.0;
double mid = ;
creat();
while(fabs(r - l) > EXP){
mid = (l + r) / ;
if(prime(mid) >= )
l = mid;
else
r = mid;
}
printf("%.3lf\n",mid );
}
#ifdef DEBUG
printf("Time cost : %lf s\n",(double)clock()/CLOCKS_PER_SEC);
#endif
//cout << "Hello world!" << endl;
return ;
}

二分法与Dinkelbach算法

Dinkelbach

/*
*@Author: Agnel-Cynthia
*@Language: C++
*/
//#include <bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<vector>
#include<bitset>
#include<queue>
#include<deque>
#include<stack>
#include<cmath>
#include<list>
#include<map>
#include<set>
//#define DEBUG
#define RI register int
#define endl "\n"
using namespace std;
typedef long long ll;
//typedef __int128 lll;
const int N=+;
const int M=+;
const int MOD=1e9+;
const double PI = acos(-1.0);
const double EXP = 1E-;
const int INF = 0x3f3f3f3f;
//int t,n,m,k,p,l,r,u,v;
//ll a[maxn],b[maxn]; #define Rep(i,l,r) for(i=(l);i<=(r);i++)
#define rep(i,l,r) for(i=(l);i< (r);i++)
#define Rev(i,r,l) for(i=(r);i>=(l);i--)
#define rev(i,r,l) for(i=(r);i> (l);i--)
#define Each(i,v) for(i=v.begin();i!=v.end();i++)
#define r(x) read(x) int CH , NEG ;
template <typename TP>inline void read(TP& ret) {
ret = NEG = ; while (CH=getchar() , CH<'!') ;
if (CH == '-') NEG = true , CH = getchar() ;
while (ret = ret*+CH-'' , CH=getchar() , CH>'!') ;
if (NEG) ret = -ret ;
}
#define maxn 1010LL
#define infi 100000000LL
#define eps 1E-8F
#define sqr(x) ((x)*(x)) template <typename TP>inline bool MA(TP&a,const TP&b) { return a < b ? a = b, true : false; }
template <typename TP>inline bool MI(TP&a,const TP&b) { return a > b ? a = b, true : false; } int n;
int x[maxn], y[maxn], h[maxn];
double v[maxn][maxn], c[maxn][maxn]; bool vis[maxn];
double w[maxn];
double rv[maxn];///
inline double prim(double M) {
int i, j, k;
double minf, minw;
double sumc = , sumv = ;///
memset(vis,,sizeof vis);
Rep (i,,n) w[i] = v[][i]-M*c[][i],
rv[i] = v[][i];///
vis[] = true, minf = ;
rep (i,,n) {
minw = infi;
Rep (j,,n) if (!vis[j] && w[j]<minw)
minw = w[j], k = j;
sumv += rv[k], sumc += rv[k]-w[k];///
minf += minw, vis[k] = true;
Rep (j,,n) if (!vis[j])
if (MI(w[j],v[k][j]-M*c[k][j]))
rv[j] = v[k][j];///
}
return sumv*M/sumc;///
return minf;
} int main() {
int i, j;
double L, M, R;
double maxv, maxc, minv, minc;
while (scanf("%d", &n)!=EOF && n) {
Rep (i,,n)
scanf("%d%d%d", &x[i], &y[i], &h[i]);
maxv = maxc = -infi, minv = minc = infi;
rep (i,,n) Rep (j,i+,n) {
c[i][j] = c[j][i] = sqrt(sqr((double)x[i]-x[j])+sqr((double)y[i]-y[j]));
v[i][j] = v[j][i] = abs((double)h[i]-h[j]);
MA(maxv,v[i][j]), MI(minv,v[i][j]);
MA(maxc,c[i][j]), MI(minc,c[i][j]);
}
L = minv/maxc, R = maxv/minc;
while (true) {///
R = prim(L);///
if (fabs(L-R) < eps) break;///
L = R;///
}///
/*while (R-L > 1E-6) { // L:minf>0 R:minf<=0
M = (L+R)/2.0;
if (prim(M) > eps) L = M;
else R = M;
}*/
printf("%.3f\n", R);
}
//END: getchar(), getchar();
return ;
}

Desert King(01分数规划问题)(最优斜率生成树)的更多相关文章

  1. POJ 2728 Desert King 01分数规划,最优比率生成树

    一个完全图,每两个点之间的cost是海拔差距的绝对值,长度是平面欧式距离, 让你找到一棵生成树,使得树边的的cost的和/距离的和,比例最小 然后就是最优比例生成树,也就是01规划裸题 看这一发:ht ...

  2. POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)

    [题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...

  3. POJ 2728 Desert King (01分数规划)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions:29775   Accepted: 8192 Descr ...

  4. poj2728 Desert King——01分数规划

    题目:http://poj.org/problem?id=2728 第一道01分数规划题!(其实也蛮简单的) 这题也可以用迭代做(但是不会),这里用了二分: 由于比较裸,不作过多说明了. 代码如下: ...

  5. 【POJ2728】Desert King - 01分数规划

    Description David the Great has just become the king of a desert country. To win the respect of his ...

  6. poj2728 Desert King --- 01分数规划 二分水果。。

    这题数据量较大.普通的求MST是会超时的. d[i]=cost[i]-ans*dis[0][i] 据此二分. 但此题用Dinkelbach迭代更好 #include<cstdio> #in ...

  7. POJ 2728 Desert King | 01分数规划

    题目: http://poj.org/problem?id=2728 题解: 二分比率,然后每条边边权变成w-mid*dis,用prim跑最小生成树就行 #include<cstdio> ...

  8. 【POJ2728】Desert King(分数规划)

    [POJ2728]Desert King(分数规划) 题面 vjudge 翻译: 有\(n\)个点,每个点有一个坐标和高度 两点之间的费用是高度之差的绝对值 两点之间的距离就是欧几里得距离 求一棵生成 ...

  9. POJ 3621 Sightseeing Cows 01分数规划,最优比例环的问题

    http://www.cnblogs.com/wally/p/3228171.html 题解请戳上面 然后对于01规划的总结 1:对于一个表,求最优比例 这种就是每个点位有benefit和cost,这 ...

  10. 【转】[Algorithm]01分数规划

    因为搜索关于CFRound277.5E题的题解时发现了这篇文章,很多地方都有值得借鉴的东西,因此转了过来 原文:http://www.cnblogs.com/perseawe/archive/2012 ...

随机推荐

  1. Android图片优化指南

    图片作为内存消耗大户,一直是开发人员尝试优化的重点对象.Bitmap的内存从3.0以前的位于native,到后来改成jvm,再到8.0又改回到native.fresco花费很多精力在5.0系统之前把B ...

  2. C/C++中的转义字符

    在C语言中有三种转义字符,它们是:一般转义字符.八进制转义字符和十六进制转义字符. 1.一般转义字符 这种转义字符,虽然在形式上由两个字符组成,但只代表一个字符.常用的一般转义字符为: \a \n \ ...

  3. 视图:setContentView()

    1.setContentView的作用是将View加载到根view之上,这样当显示view时,先显示根view,然后在显示子view,以此类推,最终将所有view显示出来. 2.setContentV ...

  4. StringTokenizer工具类的使用

    package stringtokenizer.java; import java.util.StringTokenizer; public class stringtokenizer { publi ...

  5. 大数据笔记(二十四)——Scala面向对象编程实例

    ===================== Scala语言的面向对象编程 ======================== 一.面向对象的基本概念:把数据和操作数据的方法放到一起,作为一个整体(类 c ...

  6. SecureCRT通过密钥登录

    转载  https://blog.csdn.net/langkeziju/article/details/53024031 说明:一般的密码方式登录容易被密码暴力破解.所以一般我们会将 SSH 的端口 ...

  7. ffmpeg摄像头推流

    ffmpeg -f dshow -i video="Integrated Camera" -vcodec libx264 -preset:v ultrafast -tune:v z ...

  8. 一、基础篇--1.1Java基础-String、StringBuilder、StringBuffer

    String.StringBuilder.StringBuffer 主要区别在两点上: 速度效率上对比:StringBuilder>StringBuffer>String 线程安全上来说: ...

  9. c++实验8 哈夫曼编码-译码器

    哈夫曼编码-译码器 此次实验的注释解析多加不少---若对小伙伴们有帮助 希望各位麻烦点个关注 多谢 1.哈夫曼树构造算法为: (1)由给定的n个权值{w1,w2,…,wn}构造n棵只有根结点的二叉树, ...

  10. [VBA]斐波那契数列

    Sub 斐波那契()Dim arrFor i = 3 To 100Cells(1, 1) = 0Cells(2, 1) = 1Cells(i, 1) = Cells(i - 1, 1) + Cells ...