题面

传送门

思路

这题目是真的难读......阅读理解题啊......

但是理解了以后就发现,题目等价于:

给你一个区间,支持单点修改,以及查询一段区间的乘积的欧拉函数值,这个答案对19961993取模

这里是欧拉函数的原因显然,题目中的那个不相冲实际上就是扩展欧几里得里面的那个定理,要满足不相冲(也就是方程有解),$product$和$number$必须互质

序列当中,每个元素大小不超过1e6,质因数都是前60个

那么我们显然可以开一棵线段树来维护这个区间乘积,但是怎么处理欧拉函数呢?$O(\sqrt{n})$的复杂度求吗?但是这题可以到$1000000^{100000}$诶......

没关系,我们来看一个神秘小技巧

设一个数$x=\prod_{i=1}{k}p_i{a_i}$,那么:

$\varphi(x)=\prod_{i=1}{k}(p_i-1)p_i{a_i-1}=x\prod_{i=1}^{k}\frac{p_i-1}{p_i}$

那么我们再开一棵线段树,把60个质因数在对应区间里的出现情况压进一个long long里面

每次查询的时候,查询出来取模过的乘积,再对每个出现过的质因数乘上模意义下的$\frac{p_i-1}{p_i}$,就是答案了

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#define ll long long
#define mp make_pair
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
const ll MOD=19961993;
ll qpow(ll a,ll b){
ll re=1ll;
while(b){
if(b&1) re=re*a%MOD;
a=a*a%MOD;b>>=1;
}
return re;
}
int vis[310],pri[70],cntp,inv[70];
void init(){
int i,j,k;vis[1]=1;
for(i=2;i<=281;i++){
if(!vis[i]) pri[++cntp]=i,inv[cntp]=qpow(i,MOD-2);
for(j=1;j<=cntp;j++){
k=i*pri[j];if(k>281) break;
vis[k]=1;
if(i%pri[j]==0) break;
}
}
}
ll a[400010],bit[400010];//a是乘积,b是压位的质因数状态
void update(int num){
int son=num<<1;
a[num]=a[son]*a[son+1]%MOD;
bit[num]=bit[son]|bit[son+1];
}
void build(int l,int r,int num){
int mid=(l+r)>>1;
if(l==r){
a[num]=3;bit[num]=2;return;
}
build(l,mid,num<<1);build(mid+1,r,(num<<1)+1);
update(num);
}
void change(int l,int r,int num,int pos,ll val){
int mid=(l+r)>>1,i;
if(l==r){
a[num]=val;bit[num]=0;
for(i=1;i<=60;i++) if(val%pri[i]==0) bit[num]|=(1ll<<(i-1));
return;
}
if(mid>=pos) change(l,mid,num<<1,pos,val);
else change(mid+1,r,(num<<1)+1,pos,val);
update(num);
}
pair<ll,ll> query(int l,int r,int ql,int qr,int num){
int mid=(l+r)>>1;pair<ll,ll>re=mp(1,0),tmp;
if(l>=ql&&r<=qr) return mp(a[num],bit[num]);
if(mid>=ql){
tmp=query(l,mid,ql,qr,num<<1);
re.first=re.first*tmp.first%MOD;
re.second|=tmp.second;
}
if(mid<qr){
tmp=query(mid+1,r,ql,qr,(num<<1)+1);
re.first=re.first*tmp.first%MOD;
re.second|=tmp.second;
}
return re;
}
int main(){
int n=read(),i,t1,t2,t3;build(1,100000,1);pair<ll,ll>tmp;
init();
while(n--){
t1=read();t2=read();t3=read();
if(t1) change(1,100000,1,t2,t3);
else{
tmp=query(1,100000,t2,t3,1);
for(i=1;i<=60;i++)
if(tmp.second&(1ll<<(i-1)))
tmp.first=tmp.first*(pri[i]-1)%MOD*inv[i]%MOD;
printf("%lld\n",tmp.first);
}
}
}

[bzoj3813] 奇数国 [线段树+欧拉函数]的更多相关文章

  1. 【BZOJ3813】奇数国 线段树+欧拉函数

    [BZOJ3813]奇数国 Description 给定一个序列,每次改变一个位置的数,或是询问一段区间的数的乘积的phi值.每个数都可以表示成前60个质数的若干次方的乘积. Sample Input ...

  2. BZOJ 3813--奇数国(线段树&欧拉函数&乘法逆元&状态压缩)

    3813: 奇数国 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 755  Solved: 432[Submit][Status][Discuss] ...

  3. 【bzoj3813】: 奇数国 数论-线段树-欧拉函数

    [bzoj3813]: 奇数国 题意:给定一个序列,每个元素可以分解为最小的60个素数的形式.(x=p1^k1*p2^k2*......p60^k60)(p1=2,p2=3,…,p60=281) 支持 ...

  4. [BZOJ3813] 奇数国 - 线段树

    3813: 奇数国 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 912  Solved: 508[Submit][Status][Discuss] ...

  5. Please, another Queries on Array?(Codeforces Round #538 (Div. 2)F+线段树+欧拉函数+bitset)

    题目链接 传送门 题面 思路 设\(x=\prod\limits_{i=l}^{r}a_i\)=\(\prod\limits_{i=1}^{n}p_i^{c_i}\) 由欧拉函数是积性函数得: \[ ...

  6. 线段树+欧拉函数——cf1114F

    调了半天,写线段树老是写炸 /* 两个操作 1.区间乘法 2.区间乘积询问欧拉函数 欧拉函数计算公式 phi(mul(ai))=mul(ai) * (p1-1)/p1 * (p2-1)/p2 * .. ...

  7. Please, another Queries on Array? CodeForces - 1114F (线段树,欧拉函数)

    这题刚开始看成求区间$\phi$和了........先说一下区间和的做法吧...... 就是说将题目的操作2改为求$(\sum\limits_{i=l}^{r}\phi(a[i]))\%P$ 首先要知 ...

  8. BZOJ4869 六省联考2017相逢是问候(线段树+欧拉函数)

    由扩展欧拉定理,a^(a^(a^(……^x)))%p中x作为指数的模数应该是φ(φ(φ(φ(……p)))),而p取log次φ就会变为1,也即每个位置一旦被修改一定次数后就会变为定值.线段树维护区间剩余 ...

  9. BZOJ 4026: dC Loves Number Theory 可持久化线段树 + 欧拉函数 + 数学

    Code: #include <bits/stdc++.h> #define ll long long #define maxn 50207 #define setIO(s) freope ...

随机推荐

  1. JSPatch库, 一个Apple官方支持的实现在线更新iOS应用的库

    简介 项目主页: https://github.com/bang590/JSPatch 示例下载: https://github.com/ios122/ios122 JSPatch 可以让你用 Jav ...

  2. jquery 筛选元素(1)

    .eq() 减少匹配元素的集合为指定的索引的那一个元素. .eq(index) index一个整数,指示元素的位置,以0为基数. $("li").eq(2).css('backgr ...

  3. C++使用GDI+实现图片格式转换

    主要是我在设置壁纸时遇到的个小问题,因为设置壁纸只能是bmp格式的图片,不可能我喜欢的壁纸就都是bmp格式的,就想怎么转换一下图片的格式,于是就在百度搜怎么弄,搜到了可行方法,却没有实现代码,有些看起 ...

  4. 4W条人才表循环处理业务sql优化过程

    场景: 使用windows服务定时更新合同数据:执行存储过程(pas_RefreshContractStatus),但存储过程里面有一个需要更新4W条人才表循环处理业务 问题: 循环更新4W条人才表状 ...

  5. php扩展开发-MINFO

    我们在用PHPinfo函数或命令行的php -i命令查看php环境相关的信息,当我们开发完成一个自己的扩展,除非这个扩展就是你自己所使用,否则你就需要对扩展进行相关的介绍,或者显示扩展用到的ini配置 ...

  6. Scala构建元数据

    反射方式构建元数据: 通过反射来获取RDD中的Schema信息.这种方式适合于列名(元数据)已知的情况下 步骤: 1.SparkConf配置环境 2.SparkContext初始化上下文 3.SQLC ...

  7. RNN-GRU-LSTM变体详解

    首先介绍一下 encoder-decoder 框架 中文叫做编码-解码器,它一个最抽象的模式可以用下图来展现出来: 这个框架模式可以看做是RNN的一个变种:N vs M,叫做Encoder-Decod ...

  8. Flask初学者:视图函数/方法返回值(HTML模板/Response对象)

    返回HTML模板:使用“from flask import render_template”,在函数中传入相对于文件夹“templates”HTML模板路径名称字符串即可(默认模板路径),flask会 ...

  9. Django自带后台管理配置

    Django自带后台管理的配置 创建项目和应用 修改配置文件 数据库配置 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql' ...

  10. urllib使用二

    urlopen方法返回一个html 对html使用info()方法返回HTTPMessage对象实例 import urllib def print_list(lists): for i in lis ...