Spark- 计算每个学科最受欢迎的老师
日志类型
测试数据
http://bigdata.myit.com/zhangsan
http://bigdata.myit.com/zhangsan
http://bigdata.myit.com/zhangsan
http://bigdata.myit.com/zhangsan
http://bigdata.myit.com/zhangsan
http://java.myit.com/lisi
http://java.myit.com/lisi
http://java.myit.com/lisi
计算每个学科最受欢迎的老师
package mypro import java.net.URL import org.apache.log4j.{Level, Logger}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkContext, SparkConf} /**
* Created by 166 on 2017/9/5.
*/
object FavTeacher {
def main(args: Array[String]) {
Logger.getLogger("org.apache.spark").setLevel(Level.OFF)
val conf = new SparkConf().setAppName(this.getClass.getName).setMaster("local[2]")//local[*]代表用多个线程跑,2代表用两个线程跑
val sc = new SparkContext(conf) //读取数据
val lines: RDD[String] = sc.textFile(args())
//整理数据
val subjectAndTeacher:RDD[(String,String)]=lines.map(line=> {
val url = new URL(line)
val host = url.getHost
val subject = host.substring(, host.indexOf("."))
val teacher = url.getPath.substring() //去掉路径前面的"/"
(subject, teacher)
}) //聚合
val reduce = subjectAndTeacher.map((_,)).reduceByKey(_+_)
//println(reduce.collect().toBuffer) //按学科分组
val grouped: RDD[(String, Iterable[((String, String), Int)])] = reduce.groupBy(_._1._1)//迭代器不能排序,需要将它变成List。 //二次排序
val result: RDD[(String, List[((String, String), Int)])] = grouped.mapValues(_.toList.sortBy(_._2).reverse.take())//用scala的语法,会把数据全部加载到内存后再做排序,数据量大的时候会有性能问题,内存溢出的问题,不建议这样使用,
val arr: Array[(String, List[((String, String), Int)])] = result.collect()
println(arr.toBuffer) }
}
另种角度来实现,过滤多次提交
package com.rz.spark.base import java.net.URL import org.apache.log4j.{Level, Logger}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
// 过滤多次提交
object GroupFavTeacher2 {
def main(args: Array[String]): Unit = {
Logger.getLogger("org.apache.spark").setLevel(Level.OFF) val conf = new SparkConf().setMaster("local[2]").setAppName(this.getClass.getSimpleName)
val sc = new SparkContext(conf)
val topN = args(1).toInt val subject = Array("bigdata","javaee","php")
// 读取数据
val lines: RDD[String] = sc.textFile(args(0))
// 整理数据 http://bigdata.myit.cn/laozhang
val subjectAndTeacher= lines.map(line => {
val url = new URL(line)
val host = url.getHost
val subject = host.substring(0, host.indexOf("."))
val teacher = url.getPath.substring(1) // 去掉前面的/
((subject, teacher),1)
}) // 聚合
val reduced = subjectAndTeacher.reduceByKey(_+_)
// 缓存到内存,因为多次过滤都是使用同一个rdd,缓存到内存可以提高反复使用的性能
val cache = reduced.cache()
for (sb <- subject){
val sorted = cache.filter(_._1._1 == sb).sortBy(_._2,false).take(topN)
println(sorted.toBuffer)
}
sc.stop()
} }
使用自定义分区器将每个学科的数据shuffle到独自的分区,在分区内进行排序取topN
package com.rz.spark.base import java.net.URL import org.apache.log4j.{Level, Logger}
import org.apache.spark.rdd.RDD
import org.apache.spark.{Partitioner, SparkConf, SparkContext} // 自定义分区器
import scala.collection.mutable
// 过滤多次提交
object GroupFavTeacher3 {
def main(args: Array[String]): Unit = {
Logger.getLogger("org.apache.spark").setLevel(Level.OFF) val conf = new SparkConf().setMaster("local[2]").setAppName(this.getClass.getSimpleName)
val sc = new SparkContext(conf)
val topN = args().toInt val subject = Array("bigdata","javaee","php")
// 读取数据
val lines: RDD[String] = sc.textFile(args())
// 整理数据 http://bigdata.myit.cn/laozhang
val subjectAndTeacher= lines.map(line => {
val url = new URL(line)
val host = url.getHost
val subject = host.substring(, host.indexOf("."))
val teacher = url.getPath.substring() // 去掉前面的/
((subject, teacher),)
}) // 聚合
val reduced = subjectAndTeacher.reduceByKey(_+_) // 计算我们有多少学科
val sujects: Array[String] = reduced.map(_._1._1).distinct().collect() // 自定义一个分区器,并且按照指定的分区器进行分区
val subjectPartitoner = new SubjectPartitoner(sujects) // partitionBy按照指定的分区规则进行分区
val partitioned: RDD[((String, String), Int)] = reduced.partitionBy(subjectPartitoner) // 如果一次拿出一个分区(可以操作一个分区的数据)
val sorted = partitioned.mapPartitions(it => {
// 将迭代器转成List,然后排序,再转成迭代器返回
it.toList.sortBy(_._2).reverse.take(topN).toIterator // 按数值排序
})
val result = sorted.collect() println(result.toBuffer)
sc.stop()
} // 自定义分区器
class SubjectPartitoner(sbs: Array[String]) extends Partitioner{
// 相当于主构造器(new 的时候会执行一次)
// 用于存放规则的一个map
val rules = new mutable.HashMap[String, Int]()
var i =
for (sb <- sbs){
rules.put(sb,i)
i +=
} // 返回分区的数量(下一个RDD有多少分区)
override def numPartitions: Int = sbs.length // 根据传入的key计算分区标号
// Key是一个无组(String, String)
override def getPartition(key: Any): Int ={
// 获取学科名称
val subject = key.asInstanceOf[(String, String)]._1
// 根据规则计算分区编号
rules(subject)
}
} }
上面的方式会有多次shuffle,reduceByKey聚合数据的时候shuffle一次,使用自定义分区器重新对数据进行分析又shuffle了一次。我们可以尽可能的减少shuffle的过程,我们可以在reduceByKey的时候手动使用自定分区器进行分区,reduceByKey默认使用的是。HashPartitioner。
package com.rz.spark.base import java.net.URL import org.apache.log4j.{Level, Logger}
import org.apache.spark.rdd.RDD
import org.apache.spark.{Partitioner, SparkConf, SparkContext} // 自定义分区器且减少shuffle
import scala.collection.mutable // 过滤多次提交
object GroupFavTeacher4 {
def main(args: Array[String]): Unit = {
Logger.getLogger("org.apache.spark").setLevel(Level.OFF) val conf = new SparkConf().setMaster("local[2]").setAppName(this.getClass.getSimpleName)
val sc = new SparkContext(conf)
val topN = args().toInt val subject = Array("bigdata","javaee","php")
// 读取数据
val lines: RDD[String] = sc.textFile(args())
// 整理数据 http://bigdata.myit.cn/laozhang
val subjectAndTeacher= lines.map(line => {
val url = new URL(line)
val host = url.getHost
val subject = host.substring(, host.indexOf("."))
val teacher = url.getPath.substring() // 去掉前面的/
((subject, teacher),)
}) // 计算我们有多少学科
val sujects: Array[String] = subjectAndTeacher.map(_._1._1).distinct().collect() // 自定义一个分区器,并且按照指定的分区器进行分区
val subjectPartitoner = new SubjectPartitoner2(sujects) // 聚合,聚合是按照指定的分区器进行分区
// 该RDD一个分区内仅有一个学科的数据
val reduced: RDD[((String, String), Int)] = subjectAndTeacher.reduceByKey(subjectPartitoner,_+_) // 如果一次拿出一个分区(可以操作一个分区的数据)
val sorted = reduced.mapPartitions(it => {
// 将迭代器转成List,然后排序,再转成迭代器返回
it.toList.sortBy(_._2).reverse.take(topN).toIterator // 按数值排序
}) // 收集数据
val result = sorted.collect() println(result.toBuffer)
sc.stop()
} // 自定义分区器
class SubjectPartitoner2(sbs: Array[String]) extends Partitioner{
// 相当于主构造器(new 的时候会执行一次)
// 用于存放规则的一个map
val rules = new mutable.HashMap[String, Int]()
var i =
for (sb <- sbs){
rules.put(sb,i)
i +=
} // 返回分区的数量(下一个RDD有多少分区)
override def numPartitions: Int = sbs.length // 根据传入的key计算分区标号
// Key是一个无组(String, String)
override def getPartition(key: Any): Int ={
// 获取学科名称
val subject = key.asInstanceOf[(String, String)]._1
// 根据规则计算分区编号
rules(subject)
}
} }
Spark- 计算每个学科最受欢迎的老师的更多相关文章
- 大数据学习day22------spark05------1. 学科最受欢迎老师解法补充 2. 自定义排序 3. spark任务执行过程 4. SparkTask的分类 5. Task的序列化 6. Task的多线程问题
1. 学科最受欢迎老师解法补充 day21中该案例的解法四还有一个问题,就是当各个老师受欢迎度是一样的时候,其排序规则就处理不了,以下是对其优化的解法 实现方式五 FavoriteTeacher5 p ...
- 大数据学习day21-----spark04------1. 广播变量 2. RDD中的cache 3.RDD的checkpoint方法 4. 计算学科最受欢迎老师TopN
1. 广播变量 1.1 补充知识(来源:https://blog.csdn.net/huashetianzu/article/details/7821674) 之所以存在reduce side jo ...
- Spark计算模型
[TOC] Spark计算模型 Spark程序模型 一个经典的示例模型 SparkContext中的textFile函数从HDFS读取日志文件,输出变量file var file = sc.textF ...
- spark计算两个DataFrame的差集、交集、合集
spark 计算两个dataframe 的差集.交集.合集,只选择某一列来对比比较好.新建两个 dataframe : import org.apache.spark.{SparkConf, Spar ...
- 【原创 Hadoop&Spark 动手实践 7】Spark 计算引擎剖析与动手实践
[原创 Hadoop&Spark 动手实践 7]Spark计算引擎剖析与动手实践 目标: 1. 理解Spark计算引擎的理论知识 2. 动手实践更深入的理解Spark计算引擎的细节 3. 通过 ...
- 【Spark深入学习 -13】Spark计算引擎剖析
----本节内容------- 1.遗留问题解答 2.Spark核心概念 2.1 RDD及RDD操作 2.2 Transformation和Action 2.3 Spark程序架构 2.4 Spark ...
- Java进行spark计算
首先在Linux环境安装spark: 可以从如下地址下载最新版本的spark: https://spark.apache.org/downloads.html 这个下载下来后是个tgz的压缩包,解压后 ...
- 使用spark 计算netflow数据初探
spark是一个高性能的并发的计算平台,而netflow是一种一般来说数量级很大的数据.本文记录初步使用spark 计算netflow数据的大致过程. 本文包括以下过程: 1. spark环境的搭建 ...
- Spark计算均值
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 用spark来快速计算分组的平均值,写法很便捷,话不多说上代码 object ColumnVal ...
随机推荐
- Nginx访问日志和错误日志的拆分(Logstash)
>> from zhuhaiqing.info input { file { type =>> "nginx-access" path =>> ...
- static 修饰的变量在程序中容易出现的问题
package lianxi; public class StaticTest { int a = 0; static int b =0; StaticTest(){ ...
- Weka学习之关联规则分析
步骤: (一) 选择数据源 (二)选择要分析的字段 (三)选择需要的关联规则算法 (四)点击start运行 (五) 分析结果 算法选择: Apriori算法参数含义 1.car:如果设为真,则会挖掘类 ...
- PropertyUtils复制BigDecimal异常
PropertyUtils复制BigDecimal会引发异常,要注意
- 走进科学之揭开神秘的"零拷贝"!
"零拷贝"这三个字,想必大家多多少少都有听过吧,这个技术在各种开源组件中都使用了,比如kafka,rocketmq,netty,nginx等等开源框架都在其中引用了这项技术 ...
- 安装Linux CentOS与用Xshell实现远程连接
注意,进入后有一个选择skip和OK的,选择skip 网络问题 vi /etc/sysconfig/network-scripts/ifcfg-eth0 //打开网络配置文件 ONBOOT=no ...
- SecureCRT的Home+End+Del键映射
在securecrt界面:工具 → 键映射编辑器,在弹出的键盘中: 1.点击“home”,会弹出一个窗口,在“发送字符串”中输入:\033[1~ 2.点击“end”,会弹出一个窗口,在“发送字符串”中 ...
- php字符串操作: 去掉UTF-16的空格
$s = json_encode($s); $s = str_replace('\u00a0','',$s); $s = str_replace('\u3000','',$s); $s = str_r ...
- 2017-2018-1 20179209《Linux内核原理与分析》第十周作业
设备与模块 设备分类 块设备 块设备可以以块为单位寻址,块大小随设备不同而不同:设备通常支持重定位操作,也就是对数据的随机访问.块设备的例子有外存,光盘等. 字符设备 字符设备不可寻址,仅供数据的流式 ...
- python基础-第六篇-6.4模块混战
我们之前接触多的编程方式就是函数式编程,而且喜欢就一个文件里写完所有的程序代码,这样做在前期感觉还不错,不过一旦你的程序变复杂,在易读性和排错方面就感觉好吃力,功能界限不明显,那今天我们就来讲讲怎么用 ...