DP【p2051(bzoj 1801)】 [AHOI2009]中国象棋.
题目描述
这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!
40pts
考试遇到了这个题,玄学打表得了\(40pts\)
玄学打表吼啊
xjb分析
正解竟然是个\(DP\)? 还有人说是状压\(DP\)?哪里来的状压啊!
前置知识
考虑到我们的合法状态的话,每一行每一列的炮的数量\(\le 2\)
(炮打隔重山?) 显然 如果一行或者一列有三个炮的话将会不合法.(两个炮可以互相打啊 qwq)
如何设状态?
因为每一行每一列的炮的数量\(\leq 2\)
所以我们考虑记数组去存储有几列放了一个炮,有几列放了两个炮.
我们又需要考虑转移?
因此设出状态
\(f[i][j][k]\)代表放了前\(i\)行,有\(j\)列是有一个棋子,有\(k\)列是有2个棋子的合法方案数.
这个时候我们知道全部的列数,又知道一些情况的列数.
所以我们可以求出不放棋子的列数
单步容斥:空的=全部的\(-\)合法的
即空的序列\(=m-j-k\)
确定情况
- 我们可以在当前第\(i\)行不放棋子.
- 我们可以在当前第\(i\)行放一个棋子
- 我们可以在当前第\(i\)行放两个棋子.
接下来就需要分类讨论这些情况.
分类讨论
一.不放棋子
我们可以直接继承上面的状态.即
\]
二.放一个棋子
显然我们不会选择放在有两个棋子的列.
因此存在情况如下
\]
解释:
放在一个棋子的列
我们在某一个有一个棋子列放置棋子,会使这一列变为有两个棋子.
即我们要得到\(f[i][j][k]\)需要在\(j+1\)个有一个棋子的列放置棋子,变为\(j\)个有一个棋子的列
而我们又会得到一个新的有两个棋子的列.因此我们之前必须有\(k-1\)个有两个棋子的列.
即\(f[i-1][j+1][k-1]\)的状态可以传递给\(f[i][j][k]\)
而我们又可以在\((j+1)\)中的任何一列放置这一个棋子.
因此我们要\(\times (j+1)\)
放在没有棋子的列
在一个没有棋子的列放置棋子,我们会得到一个新的有一个棋子的列.
即我们要从\(j-1\)得到\(j\).
而这个时候,我们有两个棋子的列的数量不会变,所以从\(k\)传递即可.
即\(f[i-1][j-1][k]\)的状态可以传递给\(f[i][j][k]\)
又因为我在空列中的任何一列放置这个棋子.
所以要$\times $$(m-(j-1)-k)$
三.放两个棋子
这个时候情况会多一个.先请大家自己考虑一下.
这个时候存在情况如下
\]
解释
一个放在有一个棋子的列,一个放在没有棋子的列
这个时候,我们放置之后 :
一个没有棋子的列会变成一个有一个棋子的列,而一个有一个棋子的列会变成一个有两个棋子的列。
此时我们发现,
有一个棋子的列的数量不会变,因此第二维依旧为\(j\),
又因为我们会新增一个有两个棋子的列,所以我们需要从\(k-1\)转移过来.
又因为我们可以在有一个棋子的列随便放,空列随便放.
根据乘法原理,需要\(\times j \times (m-j-(k-1))\)
都放在没有棋子的列
此时我们放置之后
会增加两个新的有一个棋子的列.
因此我们需要从\(j-2\)转移过来.
而两个棋子的列的数量并不会改变,所以依旧为\(k\)
又因为在空列中我们随便放.
根据组合数学,需要\(\times C_{m-(j-2)-k}^{2}\)
都放在有一个棋子的列
我们放置在有一个棋子的列之后:
这两个有一个棋子的列都会变成有两个子的列.
即\(j+2\)变成\(j\),从\(k-2\)变成\(k\)
又因为这些有一个棋子的列我们随便选择.
根据组合数学,需要\(\times C_{j+2}^{2}\)
分析完毕
我们需要接下来做的就是判断边界,一定要判断!!(血的教训!
代码
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstring>
#define mod 9999973
#define int long long
#define R register
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,m,ans;
int f[108][108][108];
inline int C(int x)
{
return ((x*(x-1))/2)%mod;
}
signed main()
{
in(n),in(m);
f[0][0][0]=1;
for(R int i=1;i<=n;i++)
{
for(R int j=0;j<=m;j++)
{
for(R int k=0;k<=m-j;k++)
{
f[i][j][k]=f[i-1][j][k];
if(k>=1)(f[i][j][k]+=f[i-1][j+1][k-1]*(j+1));
if(j>=1)(f[i][j][k]+=f[i-1][j-1][k]*(m-j-k+1));
if(k>=2)(f[i][j][k]+=f[i-1][j+2][k-2]*(((j+2)*(j+1))/2));
if(k>=1)(f[i][j][k]+=f[i-1][j][k-1]*j*(m-j-k+1));
if(j>=2)(f[i][j][k]+=f[i-1][j-2][k]*C(m-j-k+2));
f[i][j][k]%=mod;
}
}
}
for(R int i=0;i<=m;i++)
for(R int j=0;j<=m;j++)
(ans+=f[n][i][j])%=mod;
printf("%lld",(ans+mod)%mod);
}
DP【p2051(bzoj 1801)】 [AHOI2009]中国象棋.的更多相关文章
- BZOJ 1801 AHOI2009 中国象棋 递归
标题效果:给定一个棋盘.放置一些枪.它需要随机两支枪不能互相攻击,评估的数目p模值 首先,两炮不攻击对方自由地等同于一条线最多可有只有两个枪 直形压力DP话是50分 考虑到每个列是等效 然后我们就可以 ...
- BZOJ 1801: [Ahoi2009]中国象棋
题目描述 //每行每列最多放两个,可以讨论第i-1行到第i行的每一种情况 #include<complex> #include<cstdio> using namespace ...
- 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP
P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...
- Luogu P2051 [AHOI2009]中国象棋(dp)
P2051 [AHOI2009]中国象棋 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个 \(N\) 行 \(M\) 列的棋盘上,让你放若干个炮(可以是 \(0\) 个),使得没有一个炮 ...
- [Luogu P2051] [AHOI2009]中国象棋 (状压DP->网格DP)
题面 传送门:https://www.luogu.org/problemnew/show/P2051 Solution 看到这题,我们不妨先看一下数据范围 30pt:n,m<=6 显然搜索,直接 ...
- 洛谷 P2051 [AHOI2009]中国象棋 解题报告
P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...
- [洛谷P2051] [AHOI2009]中国象棋
洛谷题目链接:[AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法 ...
- luogu 2051 [AHOI2009]中国象棋
luogu 2051 [AHOI2009]中国象棋 真是一道令人愉♂悦丧心并框的好题... 首先"没有一个炮可以攻击到另一个炮"有个充分条件就是没有三个炮在同一行或同一列.证明:显 ...
- BZOJ 1801: [Ahoi2009]chess 中国象棋( dp )
dp(i, j, k)表示考虑了前i行, 放了0个炮的有j列, 放了1个炮的有k列. 时间复杂度O(NM^2) -------------------------------------------- ...
随机推荐
- 【UVA10655】 Contemplation! Algebra
题目 给定 \(p = a + b\) 和 \(q = ab\) 和 \(n\),求 \(a ^ n + b ^ n\). $0\le n\lt 2^{63} $ 分析 大水题. 先考虑 \(n\) ...
- [转载]python 变量命名规范
原文地址:python 变量命名规范作者:loveflying python源码和其他一些书籍,命名各种个性,没有一个比较统一的命名规范.于是自己总结了一些,可供参考. 模块名: 小写字母,单词之间用 ...
- selenium 使用谷歌浏览器模拟wap测试
/** * 使用谷歌浏览器模拟手机浏览器 * @param devicesName * @author xxx * 创建时间:2017-06-15,更新时间:2017-06-15 * 备注 */ pu ...
- Djano之写api使用django_rest_framework【海瑞博客】
使用django rest framework 可以更快速和友好的编写api,当然网上有很多教程,对于高手来说相对很简单,对于新手来说,根本搞不明白.那是你没有搞明白你自己的职责,做为后端,我们只要提 ...
- (转\整)UE4游戏优化 多人大地型游戏的优化(四)内存的优化
施主分享随缘,评论随心,@author:白袍小道,当苦无妨 小道暗语: 1.因为小道这里博客目录没自己整,暂时就用随笔目录结构,所以二级目录那啥就忽略了.标题格式大致都是(原or转) 二级目录 (标题 ...
- 1106 Lowest Price in Supply Chain (25 分)(树的遍历)
求叶子结点处能活得最低价格以及能提供最低价格的叶子结点的个数 #include<bits/stdc++.h> using namespace std; ; vector<int> ...
- HDU 4031 Attack (线段树)
成功袭击次数=所有袭击次数-成功防守次数 需要一个辅助pre来记录上一次袭击成功什么时候,对于每个查询,从上一次袭击成功开始,每隔t更新一次. 感觉这样做最坏时间复杂度是O(n^2),这里 说是O(q ...
- iPhone新建项目不能全屏
上个周做项目的时候,发现新建了一个项目不能全屏.伤透了我的脑筋,然后又请教了团队里其他两个大牛帮我搞定了这个问题. 虽然是搞定了,但也看的出大牛也是云里雾里.歪打正着解决的. 今天又想新做个项目,这个 ...
- PHP面向对象练习
练习内容:随机生成一个字符串 代码: <?phpclass randstring{ private $length; private $type; private $one = array(0, ...
- 【BestCoder #44】
因为这场比赛,我愉快地逃掉了晚自修. T1一开始各种SillyB,忘了40%的最低限制... T2各种想吐槽... 明明OJ警告说%lld是不行的我就换成%I64D(上面写这样的)... 结果各种WA ...