设\(f[x]\)为彻底杀死\(x\)号怪兽的代价

有转移方程

\[f[x]=min\{k[x],s[x]+\sum f[v]\}
\]

其中\(v\)是\(x\)通过普通攻击分裂出的小怪兽

这个东西有后效性,因此考虑用图论方法做

如果把转移关系看成一张图,那么一开始所有点的\(dis\)都是\(k_i\),然后我们仿照SPFA,尝试最短路的松弛操作,并把该点会影响到的点加入队列,最终\(dis[1]\)即为所求

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#define int long long
using namespace std; inline int rd(){
int ret=0,f=1;char c;
while(c=getchar(),!isdigit(c))f=c=='-'?-1:1;
while(isdigit(c))ret=ret*10+c-'0',c=getchar();
return ret*f;
}
#define space() putchar(' ')
#define nextline() putchar('\n')
void pot(int x){if(!x)return;pot(x/10);putchar('0'+x%10);}
void out(int x){if(!x)putchar('0');if(x<0)putchar('-'),x=-x;pot(x);} const int MAXN = 2000005; int n;
int s[MAXN],k[MAXN],r[MAXN];
vector<int> vec[MAXN]; int nex[MAXN],to[MAXN];
int ecnt,head[MAXN];
inline void add(int x,int y){nex[++ecnt]=head[x];to[ecnt]=y;head[x]=ecnt;}
int dis[MAXN],inq[MAXN];
queue<int> Q;
signed main(){
n=rd();int x;
for(int i=1;i<=n;i++){
s[i]=rd();k[i]=rd();r[i]=rd();
for(int j=1;j<=r[i];j++){
x=rd();
vec[i].push_back(x);
add(x,i);
}
}
for(int i=1;i<=n;i++) Q.push(i),dis[i]=k[i],inq[i]=1;
while(!Q.empty()){
int top=Q.front();Q.pop();inq[top]=0;
int sum=s[top];
for(int j=0;j<r[top];j++) sum+=dis[vec[top][j]];
if(dis[top]>sum) dis[top]=sum;
else continue;
for(int i=head[top];i;i=nex[i]){
int v=to[i];
if(!inq[v]) Q.push(v),inq[v]=1;
}
}
out(dis[1]);
return 0;
}

[BZOJ] 3875: [Ahoi2014&Jsoi2014]骑士游戏的更多相关文章

  1. bzoj 3875: [Ahoi2014&Jsoi2014]骑士游戏【dp+spfa】

    设f[i]为杀死i的最小代价,显然\( f[i]=min(k[i],s[i]+\sum f[to]) \) 但是这个东西有后效性,所以我们使用spfa来做,具体就是每更新一个f[i],就把能被它更新的 ...

  2. 【BZOJ3875】[Ahoi2014&Jsoi2014]骑士游戏 SPFA优化DP

    [BZOJ3875][Ahoi2014&Jsoi2014]骑士游戏 Description  [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会扮演一个英勇的 ...

  3. 2019.01.22 bzoj3875: [Ahoi2014&Jsoi2014]骑士游戏(spfa+dp)

    传送门 题意简述:nnn个怪物,对于编号为iii的怪物可以选择用aia_iai​代价将其分裂成另外的bib_ibi​个怪物或者用cic_ici​代价直接消灭它,现在问消灭编号为1的怪物用的最小代价. ...

  4. BZOJ3875 AHOI2014/JSOI2014骑士游戏(动态规划)

    容易想到设f[i]为杀死i号怪物所消耗的最小体力值,由后继节点更新.然而这显然是有后效性的,正常的dp没法做. 虽然spfa已经死了,但确实还是挺有意思的.只需要用spfa来更新dp值就可以了.dij ...

  5. p4042 [AHOI2014/JSOI2014]骑士游戏

    传送门 分析 我们发现对于一个怪物要不然用魔法代价使其无需考虑后续点要么用普通攻击使其转移到他所连的所有点上且所有边大于0 所以我们可以先将一个点的最优代价设为魔法攻击的代价 之后我们倒着跑spfa求 ...

  6. BZOJ3875: [Ahoi2014&Jsoi2014]骑士游戏

    [传送门:BZOJ3875] 简要题意: 给出n种怪物,每种怪物都带有三个值,S[i],K[i],R[i],分别表示对他使用普通攻击的花费,使用魔法攻击的花费,对他使用普通攻击后生成的其他怪物. 每种 ...

  7. LUOGU P4042 [AHOI2014/JSOI2014]骑士游戏 (spfa+dp)

    传送门 解题思路 首先设\(f[x]\)表示消灭\(x\)的最小花费,那么转移方程就是 \(f[x]=min(f[x],\sum f[son[x]] +s[x])\),如果这个转移是一个有向无环图,那 ...

  8. [AHOI2014/JSOI2014]骑士游戏

    题目 思博贪心题写了一个半小时没救了,我也没看出这是一个\(spfa\)来啊 设\(dp_i\)表示彻底干掉第\(i\)只怪物的最小花费,一个非常显然的事情,就是对于\(k_i\)值最小的怪物满足\( ...

  9. 洛谷 P4042 [AHOI2014/JSOI2014]骑士游戏

    题意 有\(n\)个怪物,可以消耗\(k\)的代价消灭一个怪物或者消耗\(s\)的代价将它变成另外一个或多个新的怪物,求消灭怪物$的最小代价 思路 \(DP\)+最短路 这几天做的第一道自己能\(yy ...

随机推荐

  1. webpack安装及使用

    npm run dev 第一次使用的时候用u盘将某些软件带过去. 所以要找到U盘 2.9.x的版本[推荐] 安装:npm install -g vue-cli 检测版本 vue -V/--versio ...

  2. HDU 5908 Abelian Period 可以直接用multiset

    http://acm.hdu.edu.cn/showproblem.php?pid=5908 要求把数组分成k组使得每组中的元素出现次数相同 就是分成k个集合,那么直接用multiset判定就可以 有 ...

  3. Eventlet Greenlet

    Eventlet是一个用来处理和网络相关的python网络库,而且可以通过协程来实现并发,在eventlet里,把“协程”叫做greenthread. 所谓并发,就是开启了多个greenthread, ...

  4. pat1085. Perfect Sequence (25)

    1085. Perfect Sequence (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CAO, Peng Give ...

  5. android 开发-AsyncTask异步任务的实现

     AsyncTask实现的原理,和适用的优缺点 AsyncTask,是android提供的轻量级的异步类,可以直接继承AsyncTask,在类中实现异步操作,并提供接口反馈当前异步执行的程度(可以通过 ...

  6. electron 集成 SQLCipher

    mac 安装 brew /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/m ...

  7. c# 业务层事务

    步骤: 1.先添加System.Transactions.dll的引用 2.使用System.Transactions命名空间下的类 实例: using (TransactionScope scope ...

  8. C 碎片三 运算符与表达式

    一.算术运算符 算术运算符:+. -. *. /. %等 加:+ 减: - 乘: * 除: /     除数不能为0 模:%    参与模运算的数据不能为小数 二.赋值运算符 赋值运算符:= 作用: ...

  9. 极飞P20农业无人机多机协同作业飞行

                      来自为知笔记(Wiz)

  10. 记一次有关GET/POST请求的Debug经历

    Bug描述: 电商网站, 产品列表页面,加入购物车按钮,当连续点击“加入购物车”按钮时,在MAC上的Safari上,只会有部分请求通过 Ajax 被发送出去,而在 Chrome/IE/Firefox ...