bzoj 3996 线性代数 —— 最大权闭合子图
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996
把题中的式子拆开看看,发现就是如下关系:
如果 a[i] == 1 && a[j] == 1,则 b[i][j] 有贡献;
如果 a[i] == 1,则 -c[i] 有贡献;
所以就是最大权闭合子图的模型,b[i][j] 向 a[i] 和 a[j] 连边,a[i] 向 c[i] 连边;
而 c[i] 这个点实际上没什么用,直接变成 a[i] 向 T 连边,边权是 c[i] 即可。
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
int const xn=,xm=(xn<<),inf=0x3f3f3f3f;
int n,hd[xn],ct,to[xm],nxt[xm],c[xm],S,T,dis[xn],cur[xn];
queue<int>q;
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
void ade(int x,int y,int z){to[++ct]=y; nxt[ct]=hd[x]; hd[x]=ct; c[ct]=z;}
void add(int x,int y,int z){ade(x,y,z); ade(y,x,);}
bool bfs()
{
while(q.size())q.pop();
memset(dis,,sizeof dis);
dis[]=; q.push();
while(q.size())
{
int x=q.front(); q.pop();
for(int i=hd[x],u;i;i=nxt[i])
if(!dis[u=to[i]]&&c[i])dis[u]=dis[x]+,q.push(u);
}
return dis[T];
}
int dfs(int x,int fl)
{
if(x==T)return fl;
int ret=;
for(int &i=cur[x],u;i;i=nxt[i])
{
if(dis[u=to[i]]!=dis[x]+||!c[i])continue;
int tmp=dfs(u,min(fl-ret,c[i]));
if(!tmp)dis[u]=;
c[i]-=tmp; c[i^]+=tmp;
ret+=tmp; if(ret==fl)break;
}
return ret;
}
int main()
{
n=rd(); S=; T=n*n+n+; int ans=;
for(int i=,cnt=;i<=n;i++)
for(int j=,x;j<=n;j++)
{
x=rd(); cnt++; ans+=x;
add(S,cnt,x);
add(cnt,n*n+i,inf); add(cnt,n*n+j,inf);
}
for(int i=,x;i<=n;i++)x=rd(),add(n*n+i,T,x);
while(bfs())
{
memcpy(cur,hd,sizeof hd);
ans-=dfs(S,inf);
}
printf("%d\n",ans);
return ;
}
bzoj 3996 线性代数 —— 最大权闭合子图的更多相关文章
- BZOJ3996:[TJOI2015]线性代数(最大权闭合子图)
Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...
- [TJOI2015] 线性代数 - 最大权闭合子图
展开 \(D=(AB-C)A^T\\ =\sum_{i=1}^n(\sum_{j=1}^na_jb_{j,i}-c_i)a_i\\ =\sum_{i=1}^n\sum_{j=1}^na_ia_jb_{ ...
- BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图
BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大. ...
- BZOJ.1312.[Neerc2006]Hard Life(分数规划 最大权闭合子图)
BZOJ 最大密度子图. 二分答案\(x\),转为求是否存在方案满足:\(边数-x*点数\geq 0\). 选一条边就必须选两个点,所以可以转成最大权闭合子图.边有\(1\)的正权,点有\(x\)的负 ...
- BZOJ 4873 [Shoi2017]寿司餐厅 | 网络流 最大权闭合子图
链接 BZOJ 4873 题解 当年的省选题--还记得蒟蒻的我Day1 20分滚粗-- 这道题是个最大权闭合子图的套路题.严重怀疑出题人就是先画好了图然后照着图编了个3000字的题面.和我喜欢的妹子当 ...
- BZOJ 1565 NOI2009 植物大战僵尸 topo+最小割(最大权闭合子图)
题目链接:https://www.luogu.org/problemnew/show/P2805(bzoj那个实在是有点小小的辣眼睛...我就把洛谷的丢出来吧...) 题意概述:给出一张有向图,这张有 ...
- BZOJ 1565 / P2805 [NOI2009]植物大战僵尸 (最大权闭合子图 最小割)
题意 自己看吧 BZOJ传送门 分析 - 这道题其实就是一些点,存在一些二元限制条件,即如果要选uuu则必须选vvv.求得到的权值最大是多少. 建一个图,如果选uuu必须选vvv,则uuu向vvv连边 ...
- [BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以 ...
- bzoj 1565 最大权闭合子图
因为每个植物都有保护的点(每排相邻的右面的算是保护左面的),所以连他和保护 的点一条边,然后每个点有自己的权值,要找到最大的权值且满足每个点在访问时他 的前驱一定被访问,那么反向建边,转化为后继必须访 ...
随机推荐
- swift 使用运行时进行属性关联
1.用OC思想写swift代码真得很爽,swift需要的OC基本上都有,只不过略微改变了一下,例如以前的Foundation库前缀NS全部去掉了,等等...思想其实都一样,不过swift确实非常精简, ...
- Spring 拦截器——HandlerInterceptor
采用Spring拦截器的方式进行业务处理.HandlerInterceptor拦截器常见的用途有: 1.日志记录:记录请求信息的日志,以便进行信息监控.信息统计.计算PV(Page View)等. 2 ...
- jQuery实现复选框全选/所有取消/反选/获得选择的值
<!DOCTYPE html> <html> <head> <script type="text/javascript" src=&quo ...
- rails 常用方法
bundle install --without production 不安装production中的gem ./configure && make && sudo m ...
- P2163 [SHOI2007]园丁的烦恼
题目 P2163 [SHOI2007]园丁的烦恼 做法 关于拆点,要真想拆直接全部用树状数组水过不就好了 做这题我们练一下\(cdq\)分治 左下角\((x1,y1)\)右上角\((x2,y2)\), ...
- android OTA升级包制作【转】
本文转载自:http://www.thinksaas.cn/topics/0/445/445670.html 0.签名 java -Xmx2048m -jar out/host/linux-x86/f ...
- 高通8X16电池BMS算法(二)【转】
本文转载自:http://www.voidcn.com/blog/yanleizhouqing/article/p-6051912.html 上一篇主要讲电池相关的一些知识,上节忘记讲了,电池一般分为 ...
- Codeforces 453B Little Pony and Harmony Chest:状压dp【记录转移路径】
题目链接:http://codeforces.com/problemset/problem/453/B 题意: 给你一个长度为n的数列a,让你构造一个长度为n的数列b. 在保证b中任意两数gcd都为1 ...
- snowflake(canvas)
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" charset=&q ...
- 仿联想商城laravel实战---1、仿联想商城需求和数据库设计(lavarel如何搭建项目)
仿联想商城laravel实战---1.仿联想商城需求和数据库设计(lavarel如何搭建项目) 一.总结 一句话总结: composer引入lavarel.配置域名.配置apache 1.项目名 le ...