最少换乘

时间限制:2000 ms  |  内存限制:65535 KB
难度:3
 
描述

欧洲某城是一个著名的旅游胜地,每年都有成千上万的人前来观光旅行。Dr. Kong决定利用暑假好好游览一番。。

年轻人旅游不怕辛苦,不怕劳累,只要费用低就行。但Dr. Kong年过半百,他希望乘坐BUS从住的宾馆到想去游览的景点,期间尽可量地少换乘车。

Dr. Kon买了一张旅游地图。他发现,市政部门为了方便游客,在各个旅游景点及宾馆,饭店等地方都设置了一些公交站并开通了一些单程线路。每条单程线路从某个公交站出发,依次途经若干个站,最终到达终点站。

但遗憾的是,从他住的宾馆所在站出发,有的景点可以直达,有的景点不能直达,则他可能要先乘某路BUS坐上几站,再下来换乘同一站的另一路BUS, 这样须经过几次换乘后才能到达要去的景点。

为了方便,假设对该城的所有公交站用1,2,……,N编号。Dr. Kong所在位置的编号为1,他将要去的景点编号为N。

请你帮助Dr. Kong寻找一个最优乘车方案,从住处到景点,中间换车的次数最少。

 
输入
第一行: K 表示有多少组测试数据。(2≤k≤8)
接下来对每组测试数据:
第1行: M N 表示有M条单程公交线路,共有N站。(1<=M<=100 1<N<=500)
第2~M+1行: 每行描述一路公交线路信息,从左至右按运行顺序依次给出了该线路上的所有站号,相邻两个站号之间用一个空格隔开。
输出
对于每组测试数据,输出一行,如果无法乘坐任何线路从住处到达景点,则输出"N0",否则输出最少换车次数,输出0表示不需换车可以直达。
样例输入
2
3 7
6 7
4 7 3 6
2 1 3 5
2 6
1 3 5
2 6 4 3
样例输出
2
NO

比赛的时候题目都没有看,以为是校赛的那道题(一直没有处理),赛后看了原来不是那道题,这个应该是可以想出来的。

给出m条公交车线路,用字符串处理一下,存边。然后权值为1,d[n] - 1就是答案。

不过字符串处理是有点坑的。。。(可能是多位数。。。)

 #include <iostream>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <string>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <algorithm>
#include <sstream>
#include <stack>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define FO freopen("in.txt", "r", stdin);
#define lowbit(x) (x&-x)
#define mem(a,b) memset(a, b, sizeof(a));
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=;
const int inf = 0x3f3f3f3f;
ll powmod(ll a,ll b) {ll res=;a%=mod;for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
//head const int maxn = + ;
int d[maxn];
bool vis[maxn];
int _, n, m;
char ss[ * maxn];//注意范围
struct node{
int v;
int dis;
node(){}
node(int _v, int _dis):v(_v), dis(_dis){}
}; vector<node> G[maxn];
void dijkstra(int st) {//基操
fill(d, d+maxn, inf);
mem(vis, false);
d[st] = ;
rep(i, , n+) {
int minn = inf, u = -;
rep(j, , n+) {
if(d[j] < minn && !vis[j]) {
minn = d[j];
u = j;
}
}
if(u == -) return;
vis[u] = true;
rep(j, , SZ(G[u])) {
int v = G[u][j].v;
if(d[u] + G[u][j].dis < d[v] && !vis[v]) {
d[v] = d[u] + G[u][j].dis;
}
}
}
} int main() {
for(scanf("%d", &_);_;_--) {
scanf("%d%d", &m, &n);
mem(G, );
getchar();
while(m--) {
gets(ss);
int len = strlen(ss);
VI temp;
int zhi = ;
rep(i, , len) {//把数据放入temp
if(ss[i] == ' ' || i == len - ) {
if(i == len - )
zhi = zhi * + ss[i] - '';
temp.pb(zhi);
zhi = ;
} else zhi = zhi * + ss[i] - '';
}
rep(i, , SZ(temp)) {//存边
rep(j, i+, SZ(temp)) {
G[temp[i]].pb(node(temp[j], ));
}
}
}
dijkstra();
if(d[n] == inf)
printf("NO\n");
else
printf("%d\n", d[n]-);
}
}

NYOJ1238 最小换乘 (dijkstra)的更多相关文章

  1. 1344:【例4-4】最小花费 dijkstra

    1344:[例4-4]最小花费 Dijkstra (1)a [ i ] [ j ] 存转账率(..转后所得率..) (2)dis [ i ] 也就是 a [ 起点 ] [ i ] (3)f [ i ] ...

  2. 最少换乘(Dijkstra)

    Description 欧洲某城是一个著名的旅游胜地,每年都有成千上万的人前来观光旅行.Dr. Kong决定利用暑假好好游览一番.. 年轻人旅游不怕辛苦,不怕劳累,只要费用低就行.但Dr. Kong年 ...

  3. 洛谷P1576||最小花费||dijkstra||双向建边!!

    题目描述 在n个人中,某些人的银行账号之间可以互相转账.这些人之间转账的手续费各不相同.给定这些人之间转账时需要从转账金额里扣除百分之几的手续费,请问A最少需要多少钱使得转账后B收到100元. 数据范 ...

  4. HDU 1596 也是最小路径Dijkstra

    #include<cstdio> #include<cmath> #include<cstring> +; double dist[qq]; double city ...

  5. 第八届河南省赛C.最少换乘(最短路建图)

    C.最少换乘 Time Limit: 2 Sec  Memory Limit: 128 MB Submit: 94  Solved: 25 [Submit][Status][Web Board] De ...

  6. POJ 2253 Frogger【最短路变形——路径上最小的最大权】

    链接: http://poj.org/problem?id=2253 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  7. 【转载】Dijkstra算法和Floyd算法的正确性证明

      说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正   ----------- ...

  8. Dijkstra算法和Floyd算法的正确性证明

    说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正   ------------- ...

  9. OO第三次博客作业(第三单元总结)

    (1)梳理JML语言的理论基础.应用工具链情况 Java 建模语言(JML)将注释添加到 Java 代码中,这样我们就可以确定方法所执行的内容,而不必说明它们如何做到这一点.有了 JML,我们就可以描 ...

随机推荐

  1. 2015.5.9 C#编写DLL及C#调用C#DLL

    过程比C#调用VC++dll简单. 一.创建DLL 新建工程,类型选择类库,生成的结果就是dll 注意:在项目属性-应用程序中,注意三个地方,程序集名称和默认命名空间可以调整,但要一致,别的程序调用此 ...

  2. 常见浏览器bug以及解决方法

    1.图片下方3像素: (1).描述:在div中插入图片时,图片会将div下方撑大三像素. (2).hack1:将</div>与<img>写在一行上(可以解决ie6/7): (3 ...

  3. UML在实践中的现状和一些建议

    本文是我在csdn上看到的文章,由于认识中的共鸣,摘抄至此. 原文地址:http://blog.csdn.net/vrman/article/details/280157 UML在国内不少地方获得了应 ...

  4. mongoDB的学习

    一:linux下安装mongoDB 1.在linux系统上安装MongoDB 上传安装包mongodb-linux-x86_64-3.0.6.tgz到linux系统的home目录下 tar -zxvf ...

  5. Python 网络爬虫 008 (编程) 通过ID索引号遍历目标网页里链接的所有网页

    通过 ID索引号 遍历目标网页里链接的所有网页 使用的系统:Windows 10 64位 Python 语言版本:Python 2.7.10 V 使用的编程 Python 的集成开发环境:PyChar ...

  6. PCL—关键点检测(Harris)低层次点云处理

    博客转载自:http://www.cnblogs.com/ironstark/p/5064848.html 除去NARF这种和特征检测联系比较紧密的方法外,一般来说特征检测都会对曲率变化比较剧烈的点更 ...

  7. Python沙盒环境配置

    一.简介 本文介绍配置python沙盒环境的方法步骤. 二.安装步骤 1.安装pyenv http://www.cnblogs.com/274914765qq/p/4948530.html 2.安装v ...

  8. Entity Framework Tutorial Basics(3):Entity Framework Architecture

    Entity Framework Architecture The following figure shows the overall architecture of the Entity Fram ...

  9. spring第三篇

    在昨天下午更新sprin第二篇中,叙述了将对象交给spring创建和管理,今天在spring第三篇中,主要写两个点一是spring的思想 二是spring中bean元素的属性配置. 1 spring思 ...

  10. python(二):可变参数

    python中的函数定义: def func(参数, 默认参数, 可变参数) ... 可变参数有两种定义方式: def func(*args): ... 调用方式为func(arg1, arg2, a ...