#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
const int M=;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int n,q,k;
LL ans,dis[M];
LL f[M][],vis[M],deep[M];
LL first[M],cnt;
struct node{LL to,next,w;}e[M];
void ins(LL a,LL b,LL w){e[++cnt]=(node){b,first[a],w}; first[a]=cnt;}
void insert(LL a,LL b,LL w){ins(a,b,w); ins(b,a,w);}
void dfs(LL x){
vis[x]=;
for(int i=;(<<i)<=deep[x];i++) f[x][i]=f[f[x][i-]][i-];
for(int i=first[x];i;i=e[i].next){
int now=e[i].to;
if(!vis[now]){
deep[now]=deep[x]+;
f[now][]=x;
dis[now]=dis[x]+e[i].w;
dfs(now);
}
}
}
int find(int x,int y){
if(deep[x]<deep[y]) swap(x,y);
int d=deep[x]-deep[y];
for(int i=;(<<i)<=d;i++) if((<<i)&d) x=f[x][i];
if(x==y) return x;
for(int i=;i>=;i--)
if((<<i)<=deep[x]&&f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i];
return f[x][];
}
int main(){
int x,y,w;
n=read();
for(int i=;i<n;i++) x=read(),y=read(),w=read(),insert(x,y,w);
dfs();
q=read(); k=read();
for(int i=;i<=q;i++){
x=read(); y=read();
ans=;
int s1=find(x,k),s2=find(y,k);
LL sum1=dis[x]+dis[k]-dis[s1]*;
LL sum2=dis[y]+dis[k]-dis[s2]*;
ans=ans+sum1+sum2;
printf("%lld\n",ans);
}
return ;
}

lca板子的更多相关文章

  1. bzoj-1787-洛谷-4281(LCA板子题)

    传送门(bzoj) 传送门(洛谷) 可以说这道也是一个板子题 由于题中是三个人需经过的路径最短 就会有一点点不太一样 那么 就两两求LCA 这样之后就会出现两种状况 一.所得到的三个LCA是相等的 那 ...

  2. hdu - 2586 (LCA板子题)

    传送门 (这次的英文题面要比上一个容易看多了) (英语蒟蒻的卑微) 又是一个很裸的LCA题 (显然,这次不太容易打暴力咧) (但听说还是有大佬用dfs直接a掉了) 正好 趁这个机会复习一下LCA 这里 ...

  3. Nearest Common Ancestors(LCA板子)

    题目链接:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 1000 ...

  4. 用tarjan求LCA板子(比倍增快)

    懒!!直接转载!!!! https://solstice23.top/archives/62

  5. [板子]倍增LCA

    倍增LCA板子,没有压行,可读性应该还可以.转载请随意. #include <cstdio> #include <cstring> #include <algorithm ...

  6. SPOJ COT Count on a tree(树上主席树 + LCA 求点第k小)题解

    题意:n个点的树,每个点有权值,问你u~v路径第k小的点的权值是? 思路: 树上主席树就是每个点建一棵权值线段树,具体看JQ博客,LCA用倍增logn求出,具体原理看这里 树上主席树我每个点的存的是点 ...

  7. 洛谷P3379lca,HDU2586,洛谷P1967货车运输,倍增lca,树上倍增

    倍增lca板子洛谷P3379 #include<cstdio> struct E { int to,next; }e[]; ],anc[][],log2n,deep[],n,m,s,ne; ...

  8. 【テンプレート】LCA

    LCA目前比较流行的算法主要有tarjian,倍增和树链剖分 1)tarjian 是一种离线算法,需要提前知道所有询问对 算法如下 1.读入所有询问对(u,v),并建好树(建议邻接表) 2.初始化每个 ...

  9. 「刷题笔记」LCA问题相关

    板子 ll lg[40]; ll dep[N],fa[N][40]; ll dis[N]; void dfs(ll u,ll f) { dep[u]=dep[f]+1; fa[u][0]=f; for ...

随机推荐

  1. 关于Mysql唯一索引的操作方法(添加删除)

    首先我们查看一下News数据表的索引信息      使用命令 show index from ‘数据表名称’; 目前数据表中仅有一个主键索引 继续,我们给news表添加两个唯一索引(两种方法) 方法一 ...

  2. Flask初学者:蓝图Blueprint

    蓝图这个名字好像就是根据单词Blueprint字面意思来,跟平常我们理解的蓝图完全挂不上钩,这里蓝图就是指Blueprint. 使用蓝图的好处是可以将不同功能作用的视图函数/类视图放到不同的模块中,可 ...

  3. random模块 time模块的用法 python

    1.random()模块的使用 import random x = random.random() y = random.random() print(x,y*10) #random.random() ...

  4. Android面试收集录17 Android进程优先级

    在安卓系统中:当系统内存不足时,Android系统将根据进程的优先级选择杀死一些不太重要的进程,优先级低的先杀死.进程优先级从高到低如下. 前台进程 处于正在与用户交互的activity 与前台act ...

  5. Java线程和多线程(八)——Thread Dump

    Java的Thread Dump就是列出JVM中所有激活状态的线程. Java Thread Dump Java Thread Dump在分析应用性能瓶颈和死锁的时候,是非常有效的. 下面将介绍多种不 ...

  6. PCB工艺要求

    项目 加工能力 工艺详解   层数 1~6层 层数,是指PCB中的电气层数(敷铜层数).目前嘉立创只接受1~6层板.   板材类型 FR-4板材 板材类型:纸板.半玻纤.全玻纤(FR-4).铝基板,目 ...

  7. Java密码学综述---密码学基本功能

    机密性 只有发送方与指定接收方才能理解报文的内容,监听者只能截取到加密后的报文信息,但不能还原报文的内容,做到了保密 鉴别 发送方与接收方都应该能证实通信过程所涉及的另一方,通信的另一方确实具有它们所 ...

  8. svn git 导入本地文件到远程服务器 import

    以前,想要把本地的一个文件上传到svn 或者git 服务器的时候,都要先把服务器上的文件夹down 下来,然后把要添加的文件添加进去,然后提交. 想想都麻烦. 现在我们用import 命令就可以做到, ...

  9. startActivityForResult 请求码不正确

    今天遇到一个坑,就是 startActivityForResult 接收不到正确的请求码. 比如,我startActivityForResult的时候,设置的请求码是4,但是接收到的时候是100032 ...

  10. Java 泛型 二

    一. 泛型概念的提出(为什么需要泛型)? 首先,我们看下下面这段简短的代码: 1 public class GenericTest { 2 3 public static void main(Stri ...