题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=3449

题目大意:

fj打算去买一些东西,在那之前,他需要一些盒子去装他打算要买的不同的物品。每一个盒子有特定要装的东西(就是说如果他要买这些东西里的一个,他不得不先买一个盒子)。每一种物品都有自己的价值,现在FJ只有W元去购物,他打算用这些钱买价值最高的东西。

思路:

这是有依赖的背包,每件物品买之前必须买特定的盒子

背包九讲:

所以先对每一个箱子进行01背包,保存可以凑出的所有的花费和该花费的最大价值,这是一组中的所有状态,且只能取一个或者不取,背包转化成分组背包,然后就可以做了。

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
typedef pair<int, int> Pair ;
const int INF = 0x3f3f3f3f;
const int maxn = 1e5 + ;
int T, n, m, cases;
struct node
{
int price;
int num;
int price_sum;
int cost[], value[];
int dp[];
};
node a[];
int dp[maxn];
int main()
{
while(cin >> n >> m)
{
memset(dp, , sizeof(dp));
memset(a, , sizeof(a));
for(int i = ; i < n; i++)
{
scanf("%d%d", &a[i].price, &a[i].num);
a[i].price_sum = ;
for(int j = ; j < a[i].num; j++)
{
scanf("%d%d", &a[i].cost[j], &a[i].value[j]);
a[i].price_sum += a[i].cost[j];
}
}
for(int i = ; i < n; i++)//对,每个箱子预处理出所有可凑出的花费和该花费的最大价值
{
memset(a[i].dp, -, sizeof(a[i].dp));
a[i].dp[] = ;
for(int j = ; j < a[i].num; j++)
{
for(int k = a[i].price_sum; k >= a[i].cost[j]; k--)
if(a[i].dp[k - a[i].cost[j]] >= )a[i].dp[k] = max(a[i].dp[k], a[i].dp[k - a[i].cost[j]] + a[i].value[j]);
}/*
for(int j = 0; j <= a[i].price_sum; j++)
cout<<a[i].dp[j]<<" ";
cout<<endl;*/
}
for(int i = ; i < n; i++)//枚举每一个的箱子
{
vector<Pair>d;
for(int j = ; j <= a[i].price_sum; j++)//将该箱子的所有状态存下来
{
if(a[i].dp[j] > )
d.push_back(Pair(j + a[i].price, a[i].dp[j]));
}
for(int v = m; v >= ; v--)//枚举花费
{
for(int j = ; j < d.size(); j++)//枚举改组的状态
if(v >= d[j].first)
dp[v] = max(dp[v], dp[v - d[j].first] + d[j].second);
}
}
cout<<dp[m]<<endl;
}
return ;
}

还有一种写法,在dp的时候把预处理和状态转化合并起来,时间复杂度降低了一点

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
typedef pair<int, int> Pair ;
const int INF = 0x3f3f3f3f;
const int maxn = 1e5 + ;
int T, n, m, cases;
int a[];
int dp[][];
struct node
{
int v, w;
};
vector<node>G[];
int main()
{
while(cin >> n >> m)
{
memset(dp, , sizeof(dp));
for(int i = ; i <= n; i++)G[i].clear();
int tot, x, y;
for(int i = ; i <= n; i++)
{
scanf("%d%d", &a[i], &tot);
for(int j = ; j < tot; j++)
{
scanf("%d%d", &x, &y);
G[i].push_back(node{x, y});
}
} for(int i = ; i <= n; i++)//枚举每种箱子
{
for(int j = ; j < a[i]; j++)dp[i][j] = -;
for(int j = a[i]; j <= m; j++)dp[i][j] = dp[i - ][j - a[i]];//这里是确保先购买购物车 for(int j = ; j < G[i].size(); j++)//在购物车内进行01背包
{
for(int k = m; k >= G[i][j].v; k--)
{
if(dp[i][k - G[i][j].v] != -)
dp[i][k] = max(dp[i][k], dp[i][k - G[i][j].v] + G[i][j].w);
}
}
for(int j = ; j <= m; j++)dp[i][j] = max(dp[i - ][j], dp[i][j]);//和之前的值比较
}
cout<<dp[n][m]<<endl;
}
return ;
}

hdu-3449 Consumer---有依赖性质的背包的更多相关文章

  1. hdu 3449 Consumer (依赖01背包)

    题目: 链接:pid=3449">点击打开链接 题意: 思路: dp[i][j]表示前i个箱子装j钱的材料可以得到的最大价值. 代码: #include<iostream> ...

  2. HDU 1561&HDU 3449 一类简单依赖背包问题

    HDU 1561.这道是树形DP了,所谓依赖背包,就是选A前必须选B,这样的问题.1561很明显是这样的题了.把0点当成ROOT就好,然后选子节点前必须先选根,所以初始化数组每一行为该根点的值.由于多 ...

  3. HDU 3449 Consumer (背包问题之有依赖背包)

    题目链接 Problem Description FJ is going to do some shopping, and before that, he needs some boxes to ca ...

  4. HDU 3449 Consumer

    这是一道依赖背包问题.背包问题通常的解法都是由0/1背包拓展过来的,这道也不例外.我最初想到的做法是,由于有依赖关系,先对附件做个DP,得到1-w的附件背包结果f[i]表示i花费得到的最大收益,然后把 ...

  5. HDU 2159 FATE(二维费用背包)

    FATE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  6. HDU 1712 ACboy needs your help(包背包)

    HDU 1712 ACboy needs your help(包背包) pid=1712">http://acm.hdu.edu.cn/showproblem.php? pid=171 ...

  7. 【MVVM Dev】多个具有依赖性质的ComboBox对数据的过滤

    一.前言 在界面编程中,我们常常会遇到具有依赖性质的ComboBox框,比如最常见的: 省/直辖市 => 地级市/区 => 区/街道 今天就说一下在WPF的MVVM模式中如何实现该功能 二 ...

  8. HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包)

    HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包) 题意分析 裸的完全背包问题 代码总览 #include <iostream> #include <cstdio> ...

  9. 洛谷 P1064 金明的预算方案【有依赖的分组背包】

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱 ...

随机推荐

  1. PHP漏洞全解—————9、文件上传漏洞

    本文主要介绍针对PHP网站文件上传漏洞.由于文件上传功能实现代码没有严格限制用户上传的文件后缀以及文件类型,导致允许攻击者向某个可通过 Web 访问的目录上传任意PHP文件,并能够将这些文件传递给 P ...

  2. MB Star C5 Functions

    The MB STAR C5 notion and brand combination for hardware and software program components will be the ...

  3. 工作必备,五分钟如何搞定Excel甘特图

    工作必备,五分钟如何搞定Excel甘特图  https://www.sohu.com/a/212628821_641930 EXCEL中如何给图表添加标题 1.选中图表 >> [布局] 菜 ...

  4. my27_OGG MySQL To MySQL错误汇总

    OGG-00446 2019-02-12T14:57:57.668+0800 ERROR OGG-00446 Oracle GoldenGate Delivery for MySQL, r1.prm: ...

  5. shematool -initschema -dbtype mysql error org.apache.hadoop.hive.metastore.hivemetaexception:Failed to get schema version

    命令:schematool -initSchema -dbType mysql Fix the issue: edit /etc/mysql/my.cnf change bind-address   ...

  6. java多线程(三)

    1.1什么的多线程的安全问题? 多个线程对共享资源进行访问时,引起共享资源不一致的问题.   1.2一般解决多线程安全问题的解决方案有哪些? 1.2.1 同步方法  public synchroniz ...

  7. 还是畅通工程(prim和kruskal)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1233 还是畅通工程 Time Limit: 4000/2000 MS (Java/Others)    ...

  8. git使用笔记-基础篇

    git使用手册:https://git-scm.com/book/zh/v1/ 一.分支 1.查看所有本地分支 git branch 2.查看所有本地分支和远程分支 git branch -a 3.查 ...

  9. Murano Service Architecture Introducation

    1. Murano Project Mission From the third-party tool developer’s perspective, the application catalog ...

  10. node+mongoDB+express项目需求解释

    1. morgon模块 --- morgon 用于打印日志,分别为向后台打印和向文件中打印两种情况.stackoverflow. 2. app.use(bodyParser.json()) 3. de ...