题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=3449

题目大意:

fj打算去买一些东西,在那之前,他需要一些盒子去装他打算要买的不同的物品。每一个盒子有特定要装的东西(就是说如果他要买这些东西里的一个,他不得不先买一个盒子)。每一种物品都有自己的价值,现在FJ只有W元去购物,他打算用这些钱买价值最高的东西。

思路:

这是有依赖的背包,每件物品买之前必须买特定的盒子

背包九讲:

所以先对每一个箱子进行01背包,保存可以凑出的所有的花费和该花费的最大价值,这是一组中的所有状态,且只能取一个或者不取,背包转化成分组背包,然后就可以做了。

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
typedef pair<int, int> Pair ;
const int INF = 0x3f3f3f3f;
const int maxn = 1e5 + ;
int T, n, m, cases;
struct node
{
int price;
int num;
int price_sum;
int cost[], value[];
int dp[];
};
node a[];
int dp[maxn];
int main()
{
while(cin >> n >> m)
{
memset(dp, , sizeof(dp));
memset(a, , sizeof(a));
for(int i = ; i < n; i++)
{
scanf("%d%d", &a[i].price, &a[i].num);
a[i].price_sum = ;
for(int j = ; j < a[i].num; j++)
{
scanf("%d%d", &a[i].cost[j], &a[i].value[j]);
a[i].price_sum += a[i].cost[j];
}
}
for(int i = ; i < n; i++)//对,每个箱子预处理出所有可凑出的花费和该花费的最大价值
{
memset(a[i].dp, -, sizeof(a[i].dp));
a[i].dp[] = ;
for(int j = ; j < a[i].num; j++)
{
for(int k = a[i].price_sum; k >= a[i].cost[j]; k--)
if(a[i].dp[k - a[i].cost[j]] >= )a[i].dp[k] = max(a[i].dp[k], a[i].dp[k - a[i].cost[j]] + a[i].value[j]);
}/*
for(int j = 0; j <= a[i].price_sum; j++)
cout<<a[i].dp[j]<<" ";
cout<<endl;*/
}
for(int i = ; i < n; i++)//枚举每一个的箱子
{
vector<Pair>d;
for(int j = ; j <= a[i].price_sum; j++)//将该箱子的所有状态存下来
{
if(a[i].dp[j] > )
d.push_back(Pair(j + a[i].price, a[i].dp[j]));
}
for(int v = m; v >= ; v--)//枚举花费
{
for(int j = ; j < d.size(); j++)//枚举改组的状态
if(v >= d[j].first)
dp[v] = max(dp[v], dp[v - d[j].first] + d[j].second);
}
}
cout<<dp[m]<<endl;
}
return ;
}

还有一种写法,在dp的时候把预处理和状态转化合并起来,时间复杂度降低了一点

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
typedef pair<int, int> Pair ;
const int INF = 0x3f3f3f3f;
const int maxn = 1e5 + ;
int T, n, m, cases;
int a[];
int dp[][];
struct node
{
int v, w;
};
vector<node>G[];
int main()
{
while(cin >> n >> m)
{
memset(dp, , sizeof(dp));
for(int i = ; i <= n; i++)G[i].clear();
int tot, x, y;
for(int i = ; i <= n; i++)
{
scanf("%d%d", &a[i], &tot);
for(int j = ; j < tot; j++)
{
scanf("%d%d", &x, &y);
G[i].push_back(node{x, y});
}
} for(int i = ; i <= n; i++)//枚举每种箱子
{
for(int j = ; j < a[i]; j++)dp[i][j] = -;
for(int j = a[i]; j <= m; j++)dp[i][j] = dp[i - ][j - a[i]];//这里是确保先购买购物车 for(int j = ; j < G[i].size(); j++)//在购物车内进行01背包
{
for(int k = m; k >= G[i][j].v; k--)
{
if(dp[i][k - G[i][j].v] != -)
dp[i][k] = max(dp[i][k], dp[i][k - G[i][j].v] + G[i][j].w);
}
}
for(int j = ; j <= m; j++)dp[i][j] = max(dp[i - ][j], dp[i][j]);//和之前的值比较
}
cout<<dp[n][m]<<endl;
}
return ;
}

hdu-3449 Consumer---有依赖性质的背包的更多相关文章

  1. hdu 3449 Consumer (依赖01背包)

    题目: 链接:pid=3449">点击打开链接 题意: 思路: dp[i][j]表示前i个箱子装j钱的材料可以得到的最大价值. 代码: #include<iostream> ...

  2. HDU 1561&HDU 3449 一类简单依赖背包问题

    HDU 1561.这道是树形DP了,所谓依赖背包,就是选A前必须选B,这样的问题.1561很明显是这样的题了.把0点当成ROOT就好,然后选子节点前必须先选根,所以初始化数组每一行为该根点的值.由于多 ...

  3. HDU 3449 Consumer (背包问题之有依赖背包)

    题目链接 Problem Description FJ is going to do some shopping, and before that, he needs some boxes to ca ...

  4. HDU 3449 Consumer

    这是一道依赖背包问题.背包问题通常的解法都是由0/1背包拓展过来的,这道也不例外.我最初想到的做法是,由于有依赖关系,先对附件做个DP,得到1-w的附件背包结果f[i]表示i花费得到的最大收益,然后把 ...

  5. HDU 2159 FATE(二维费用背包)

    FATE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  6. HDU 1712 ACboy needs your help(包背包)

    HDU 1712 ACboy needs your help(包背包) pid=1712">http://acm.hdu.edu.cn/showproblem.php? pid=171 ...

  7. 【MVVM Dev】多个具有依赖性质的ComboBox对数据的过滤

    一.前言 在界面编程中,我们常常会遇到具有依赖性质的ComboBox框,比如最常见的: 省/直辖市 => 地级市/区 => 区/街道 今天就说一下在WPF的MVVM模式中如何实现该功能 二 ...

  8. HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包)

    HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包) 题意分析 裸的完全背包问题 代码总览 #include <iostream> #include <cstdio> ...

  9. 洛谷 P1064 金明的预算方案【有依赖的分组背包】

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱 ...

随机推荐

  1. beleline hive spark-shell帮助

    -- beeline帮助 : jdbc:hive2://100.69.216.40:10001> !help !addlocaldriverjar Add driver jar file in ...

  2. 1-----Scrapy框架整体的一个了解

    这里是通过爬取伯乐在线的全部文章为例子,让自己先对scrapy进行一个整理的理解 该例子中的详细代码会放到我的github地址:https://github.com/pythonsite/spider ...

  3. HBuilder的常用快捷键

    Ctrl + d 删除整行内容 Ctrl + Shift +R 复制当前行到下一行 Ctrl + Shift +D 重新编辑 Ctrl + 方向键 当前行整行内容上移或下移 Alt + ↓ 跳转到下一 ...

  4. nodejs的异步非阻塞IO

    简单表述一下:发启向系统IO操作请求,系统使用线程池IO操作,执行完放到事件队列里,node主线程轮询事件队列,读取结果与调用回调.所以说node并非真的单线程,还是使用了线程池的多线程. 上个图看看 ...

  5. [转]how can I change default errormessage for invalid price

    本文转自:http://forums.asp.net/t/1598262.aspx?how+can+I+change+default+errormessage+for+invalid+price I ...

  6. animition动画的加入

    很多时候我们把PopupWindow用作自定义的菜单,需要一个从底部向上弹出的效果,这就需要为PopupWindow添加动画. 在工程res下新建anim文件夹,在anim文件夹先新建两个xml文件 ...

  7. pta08-图7 公路村村通 (30分)

    08-图7 公路村村通   (30分) 现有村落间道路的统计数据表中,列出了有可能建设成标准公路的若干条道路的成本,求使每个村落都有公路连通所需要的最低成本. 输入格式: 输入数据包括城镇数目正整数N ...

  8. POJ 1860——Currency Exchange——————【最短路、SPFA判正环】

    Currency Exchange Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u S ...

  9. java实现新旧版本号比较

    项目中需要使用比较现在线上版本和新版本,然后新版本执行新方法,方法如下: /** * * @方法名称:comparaVersion * @内容摘要: <版本比较> * @param old ...

  10. Git提交代码到主分区

    git 提交代码,本地新建一个my分支,不从本地master分支直接上传,而是先从本地my分支上提交至本地master分支,然后本地master提交至远程master分支 上.前提是远程只有一个mas ...