In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

Input Specification:

Each input file contains one test case. For each case, the first line gives an integer N (2), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

c[1] f[1] c[2] f[2] ... c[N] f[N]

where c[i] is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (≤), then followed by M student submissions. Each student submission consists of N lines, each in the format:

c[i] code[i]

where c[i] is the i-th character and code[i] is an non-empty string of no more than 63 '0's and '1's.

Output Specification:

For each test case, print in each line either "Yes" if the student's submission is correct, or "No" if not.

Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.

Sample Input:

7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11

Sample Output:

Yes
Yes
No
No
#include<iostream>
#include<cstring>
using namespace std;
#define maxn 70
int N,codelen,cnt1,cnt2,w[maxn];
char ch[maxn];
typedef struct TreeNode* Tree;
struct TreeNode{
int weight;
Tree Left,Right;
};
typedef struct HeapNode* Heap;
struct HeapNode{
struct TreeNode Data[maxn];
int size;
}; Tree creatTree(){
Tree T;
T = new struct TreeNode;
T->weight = ;
T->Left = T->Right = NULL;
return T;
} Heap creatHeap(){
Heap H;
H = new struct HeapNode;
H->Data[].weight = -;
H->size = ;
return H;
} void Insert(Heap H,struct TreeNode T){
int i = ++H->size;
for(; T.weight < H->Data[i/].weight; i /= )
H->Data[i] = H->Data[i/];
H->Data[i] = T;
} Tree Delete(Heap H){
int child,parent;
struct TreeNode Temp = H->Data[H->size--];
Tree T = creatTree();
*T = H->Data[];
for(parent = ; * parent <= H->size; parent = child){
child = * parent;
if(child < H->size && H->Data[child].weight > H->Data[child+].weight)
child++;
if(H->Data[child].weight > Temp.weight) break;
H->Data[parent] = H->Data[child];
}
H->Data[parent] = Temp;
return T;
} Tree Huffman(Heap H){
Tree T = creatTree();
while(H->size != ){
T->Left = Delete(H);
T->Right = Delete(H);
T->weight = T->Right->weight + T->Right->weight;
Insert(H,*T);
}
T = Delete(H);
return T;
} int WPL(Tree T,int depth){
if(!T->Left && !T->Right) return(depth*T->weight);
else return WPL(T->Left,depth+)+WPL(T->Right,depth+);
} void JudgeTree(Tree T){
if(T){
if(T->Right && T->Left) cnt2++;
else if(!T->Left && !T->Right) cnt1++;
else cnt1 = ;
JudgeTree(T->Left);
JudgeTree(T->Right);
}
} int Judge(){
int i,j,wgh,flag = ;;
char s1[maxn],s2[maxn];
Tree T = creatTree(), pt = NULL;
for(i = ; i < N; i++){
cin >> s1 >> s2;
if(strlen(s2) > N) return ;
for(j = ; s1[] != ch[j]; j++); wgh = w[j];
pt = T;
for(j = ; s2[j] ; j++){
if(s2[j] == ''){
if(!pt->Left) pt->Left = creatTree();
pt = pt->Left;
}
if(s2[j] == ''){
if(!pt->Right) pt->Right = creatTree();
pt = pt->Right;
}
if(pt->weight) flag = ;
if(!s2[j+]){
if(pt->Left || pt->Right) flag = ;
else pt->weight = wgh;
}
}
}
if(flag == ) return ;
cnt1 = cnt2 = ;
JudgeTree(T);
if(cnt1 != cnt2 + ) return ;
if(codelen == WPL(T,)) return ;
else return ;
} int main(){
int i,n;
Tree T;
Heap H;
T = creatTree();
H = creatHeap();
cin >> N;
for(i = ; i < N; i++){
getchar();
cin >> ch[i] >> w[i];
H->Data[H->size].Left = H->Data[H->size].Right = NULL;
T->weight = w[i];
Insert(H,*T);
}
T = Huffman(H);
codelen = WPL(T,);
cin >> n;
while(n--){
if(Judge()) cout<< "Yes" << endl;
else cout << "No" << endl;
}
return ;
}

05-树9 Huffman Codes (30 分)的更多相关文章

  1. pta5-9 Huffman Codes (30分)

    5-9 Huffman Codes   (30分) In 1953, David A. Huffman published his paper "A Method for the Const ...

  2. PTA 05-树9 Huffman Codes (30分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/671 5-9 Huffman Codes   (30分) In 1953, David ...

  3. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  4. pat树之专题(30分)

    (好好复习是王道) 1115. Counting Nodes in a BST (30) 分析:简单题——将bst树构造出来,然后给每个节点打上高度.最后求出树的高度.然后count树高的节点数加上树 ...

  5. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  6. 05-树9 Huffman Codes(30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  7. PAT 甲级1057 Stack (30 分)(不会,树状数组+二分)*****

    1057 Stack (30 分)   Stack is one of the most fundamental data structures, which is based on the prin ...

  8. Huffman codes

    05-树9 Huffman Codes(30 分) In 1953, David A. Huffman published his paper "A Method for the Const ...

  9. PAT 甲级 1053 Path of Equal Weight (30 分)(dfs,vector内元素排序,有一小坑点)

    1053 Path of Equal Weight (30 分)   Given a non-empty tree with root R, and with weight W​i​​ assigne ...

随机推荐

  1. [转]SCSS 和 SASS 和 HAML 和CoffeeScript

    Asset Pipeline 提供了内建直接使用 Sass 撰写 CSS 的功能. 你也许会生出这样的疑惑:什么是 Sass? Why should I care? Sass (Syntactical ...

  2. jcrop的bug

    1 360(7.1.1.620,内核:31.0.1650.63)的极速模式下,出现裁剪框后,鼠标点击,页面就会滑动到底部. 查看了下源码,发现是下面的代码: function watchKeys() ...

  3. BZOJ1972:[SDOI2010]猪国杀

    我对模拟的理解:https://www.cnblogs.com/AKMer/p/9064018.html 题目传送门:https://www.lydsy.com/JudgeOnline/problem ...

  4. Python:format()方法

    转于:https://blog.csdn.net/zhang89xiao/article/details/53818906 博主:张肖的博客 描述: format的格式 replacement_fie ...

  5. 使用雅虎YUI Compressor压缩JS过程心得记录

    对待发布的项目进行测试时,发现js下载量比较大,从jquery的min版想到了压缩项目中的js文件.很简单的google之(在此,强调一下google的重要性),搜到一个叫做YUI Compresso ...

  6. CentOS 6.6 Oracle 安装

    阿里云服务器上要装Oracle,搞了半天才搞定. 项目阿里云用的是CentOS 6.5 X86_64 ,我本地虚拟机装的是CentOS 6.6 X86_64.不过用 cat /proc/version ...

  7. windows 服务器安装python及其基本库

    步骤如下: 一.安装python软件: 1.进入windows服务器,从网址下载 python-3.5.4-amd64软件 到桌面: 2.在软件点右键,再“”以管理员身份运行“”,输入管理员密码: 3 ...

  8. 第一周作业-Linux基础入门

    写在前面 实验楼中linux基础入门的内容很多,几乎涵盖了所有的常用命令.命令的记忆不是一朝一夕的,更不能死记硬背,在实践中多操作,熟悉后自然就记住了.我没有将对每个命令操作结果都截图记录下来(事实上 ...

  9. java String编码转换

    /** * Get XML String of utf-8 * * @return XML-Formed string */ public static String getUTF8XMLString ...

  10. 图像特征--HOG特征

    1.HOG特征:方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯 ...