luogu P1468 派对灯 Party Lamps
题目描述
在IOI98的节日宴会上,我们有N(10<=N<=100)盏彩色灯,他们分别从1到N被标上号码。 这些灯都连接到四个按钮:
按钮1:当按下此按钮,将改变所有的灯:本来亮着的灯就熄灭,本来是关着的灯被点亮。
按钮2:当按下此按钮,将改变所有奇数号的灯。
按钮3:当按下此按钮,将改变所有偶数号的灯。
按钮4:当按下此按钮,将改变所有序号是3*K+1(K>=0)的灯。例如:1,4,7...
一个计数器C记录按钮被按下的次数。当宴会开始,所有的灯都亮着,此时计数器C为0。
你将得到计数器C(0<=C<=10000)上的数值和经过若干操作后某些灯的状态。写一个程序去找出所有灯最后可能的与所给出信息相符的状态,并且没有重复。
输入输出格式
输入格式:
不会有灯会在输入中出现两次。
第一行: N。
第二行: C最后显示的数值。
第三行: 最后亮着的灯,用一个空格分开,以-1为结束。
第四行: 最后关着的灯,用一个空格分开,以-1为结束。
输出格式:
每一行是所有灯可能的最后状态(没有重复)。每一行有N个字符,第1个字符表示1号灯,最后一个字符表示N号灯。0表示关闭,1表示亮着。这些行必须从小到大排列(看作是二进制数)。
如果没有可能的状态,则输出一行'IMPOSSIBLE'。
输入输出样例
10
1
-1
7 -1
0000000000
0101010101
0110110110
说明
在这个样例中,有三种可能的状态:
所有灯都关着
1,4,7,10号灯关着,2,3,5,6,8,9亮着。
1,3,5,7,9号灯关着,2, 4, 6, 8, 10亮着。
翻译来自NOCOW
USACO 2.2
所有按钮按两次 和 1.2.3三个按钮间的关系之后是和没按一样的 所以实际只有8种情况,所以在cnt=1时 实际只有按1 或2 或 3 或 4四种情况 在cnt=2时 除只按按钮4之外 其余情况均可实现
而当c>2时 都可利用c=1 and c=2 时得出,所以可实现所有情况
利用异或实现操作
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; const int C1[]={,,,};
const int C2[]={,,,,,,};
const int how[][]={
,,,,,,,//不按
,,,,,,,//按 2.4
,,,,,,,//按 3
,,,,,,,//按 1.4
,,,,,,,//按 4
,,,,,,,//按 2
,,,,,,,//按 3.4
,,,,,,}; int N,C;
int Light[];
bool tmp [];
int cntl,cntc;
int li[];
int lc[];
bool can,now[]={,,,,,,}; void open(int n)
{
for(int i=;i<;i++)
tmp[i]^=how[n][i];
}
void work(int step)
{
int cnt;
if(step==) cnt=;
else if(step==) cnt=;
else cnt=;
for(int i=cnt;i>=;i--)
{
memset(tmp,,sizeof(tmp));
if(cnt==)
open(C1[i]);
else if(cnt==)
open(C2[i]);
else
open(i);
bool note=;
for(int i=;i<=cntl;i++)
if(tmp[(li[i]-)%+]==)
{
note=;break;
}
for(int i=;i<=cntc;i++)
if(tmp[(lc[i]-)%+]==)
{
note=;break;
}
if(note)
{
for(int i=;i<=N;i++)
printf("%d",tmp[(i-)%+]);
printf("\n");
can=;
}
} }
int main()
{
scanf("%d",&N);
scanf("%d",&C);
int c;
while()
{
scanf("%d",&c);
if(c==-)break;
li[++cntl]=c;
}
while()
{
scanf("%d",&c);
if(c==-)break;
lc[++cntc]=c;
}
if(C==)
{
if(cntc)
puts("IMPOSSIBLE");
else
for(int i=;i<=N;i++)
printf("%d",);
return ;
}
work(C);
if(!can)
puts("IMPOSSIBLE");
return ;
}
luogu P1468 派对灯 Party Lamps的更多相关文章
- 【搜索】P1468 派对灯 Party Lamps
P1468 派对灯 Party Lamps 我们来分析一下对灯的操作 1.对所有灯的,这时吧所有灯看成一个整体 2.奇偶数的操作,这时可以把每两个数看成一个循环节 3.对3X+ 1的操作,这时可以把每 ...
- P1468 派对灯 Party Lamps(BIG 模拟)
题目描述 在IOI98的节日宴会上,我们有N(10<=N<=100)盏彩色灯,他们分别从1到N被标上号码. 这些灯都连接到四个按钮: 按钮1:当按下此按钮,将改变所有的灯:本来亮着的灯就熄 ...
- luoguP1468 派对灯 Party Lamps x
P1468 派对灯 Party Lamps 题目描述 在IOI98的节日宴会上,我们有N(10<=N<=100)盏彩色灯,他们分别从1到N被标上号码. 这些灯都连接到四个按钮: 按钮1:当 ...
- luogu P2962 [USACO09NOV]灯Lights 高斯消元
目录 题目链接 题解 题目链接 luogu P2962 [USACO09NOV]灯Lights 题解 可以折半搜索 map合并 复杂度 2^(n / 2)*logn 高斯消元后得到每个点的翻转状态 爆 ...
- 【BFS/DFS/YY】派对灯
[luogu1468]派对灯 题目描述 在IOI98的节日宴会上,我们有N(10<=N<=100)盏彩色灯,他们分别从1到N被标上号码. 这些灯都连接到四个按钮: 按钮1:当按下此按钮,将 ...
- USACO 2.2 Party Lamps 派对灯 (lamps)
题目描述 在IOI98的节日宴会上,我们有N(10<=N<=100)盏彩色灯,他们分别从1到N被标上号码.这些灯都连接到四个按钮: 按钮1:当按下此按钮,将改变所有的灯:本来亮着的灯就熄灭 ...
- POJ 1176 Party Lamps&& USACO 2.2 派对灯(搜索)
题目地址 http://poj.org/problem?id=1176 题目描述 在IOI98的节日宴会上,我们有N(10<=N<=100)盏彩色灯,他们分别从1到N被标上号码. 这些灯都 ...
- 【USACO 2.2.4】派对灯
[描述] 在IOI98的节日宴会上,我们有N(10<=N<=100)盏彩色灯,他们分别从1到N被标上号码. 这些灯都连接到四个按钮: 按钮1:当按下此按钮,将改变所有的灯:本来亮着的灯就熄 ...
- usaco 2.2.4 生日派对灯(最近写题碰到的,虽然知道现在写这个有点晚了)
经过分析,他看似很多的开灯的方法其实合并起来就只有八个. 首先,一个开关在执行的时候只能按一次(因为你就算按了两次就相当于一次也没有按). 当一个都不按的时候 当然就只有一种:不按. 当按一下的时候 ...
随机推荐
- mysql之select查询:练习
单表查询: 数据查询命令:select 识别要查询的列 from识别要查询的表 select 运算符: + .-.*./. 加减乘除 等于= 不等于!= 或 <> 大于等于>= 小于 ...
- linux备忘录-档案与文件系统的压缩与打包
知识点 文件扩展名与压缩解压缩工具 .Z -> compress程序压缩的档案 .gz -> gzip程序压缩的档案 .bz2 -> bzip2程序压缩的档案 .tar -> ...
- 【bzoj2694】Lcm 莫比乌斯反演+线性筛
题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...
- 如何从List中删除元素
从List中删除元素,不能通过索引的方式遍历后删除,只能使用迭代器. 错误的实现 错误的实现方法 public class Demo { public static void main(Str ...
- 51NOD 1554 欧姆诺姆和项链 巧妙利用KMP
请戳这里! #include<cstdio> #define N 1000100 char s[N]; int n,k,nxt[N],ans[N]; int main() { scanf( ...
- 雅礼集训 Day2 T3 联盟 解题报告
联盟 题目描述 \(\text{G}\) 国周边的 \(n\) 个小国家构成一个联盟以抵御 \(\text{G}\) 国入侵, 为互相支援,他们建立了\(n−1\) 条双向通路, 使得任意两个国家可以 ...
- 解决某些PC站在手机端宽度显示不正常的问题
可以打开控制台查看html标签的宽度,发现不是当前屏幕的宽度,更改下宽度即可:用js控制下,上代码 document.getElementsByTagName('html')[0].style.wid ...
- Extra Judicial Operation
Description The Suitably Protected Programming Contest (SPPC) is a multi-site contest in which conte ...
- TCP面试题之三次握手过程
TCP简介: 1.面向连接的.可靠的.基于字节流的传输层的通信协议: 2.将应用层的数据流分割成报文段并发送给目标节点的TCP层: 3.数据包都有序号,对方收到则发送ACK确认,未收到则重传: 4.使 ...
- Windows获取FSMO角色
获取 FSMO 角色若要使用 Ntdsutil 实用工具获取 FSMO 角色,请按照下列步骤操作:1.登录到基于 Windows 2000 Server 或 Windows Server 2003 的 ...