动态规划 001 - 编辑距离(Levenshtein Distance)问题
问题
字符串的编辑距离也被称为距Levenshtein距离(Levenshtein Distance),属于经典算法,常用方法使用递归,更好的方法是使用动态规划算法,以避免出现重叠子问题的反复计算,减少系统开销。
思考
也许我们以前遇过这样一个问题:
计算两个字符串的相似度。
关于相似度的定义,从下面这个例子了解一下:
比如,对于”abcdefg”和”abcdef”两个字符串来说,我们认为可以通过增加/减少一个”g”的方式来达到目的。把这个操作所需要的次数定义为两个字符串的距离,而相似度等于”距离+1”的倒数。也就是说,”abcdefg”和”abcdef”的距离为1,相似度 为1/2=0.5。给定任意两个字符串,你是否能写出一个算法来计算它们的相似度呢?(其实这个问题的关键是要求两个字符串的编辑距离。)
这个问题其实是由俄罗斯科学家Vladimir Levenshtein在1965年提出的。
分析
*先考虑一些特殊情况:
d(null, B) = strlen(B);
d(A, null) = strlen(A);
d(A, B) = 0 当且仅当 A = B.
*再考虑一般情况下的 d(A, B)
运用动态规划求出递归方程,将原问题分解为若干个子问题进行求最优解,而后得出原问题的最优解,采用“填表的方法”。
设计步骤:对每个子问题只求解一次,将其结果保存在一张表(构造一个行数为n+1 列数为 m+1 的矩阵 , 用来保存完成某个转换需要执行的最少操作的次数, 其中,n为字符串A的长度,m为字符串B的长度)中。
对矩阵中的一点d[i][j],保存从A[0:i]变到B[0:j]的编辑距离。其中,这里S[0:i]变到t[0:j]有三种情况,求得这三种情况的最小值作为最小操作数:
(1)设可以在k1个操作内将s[0:i-1]转换为t[0:j],用k1+1次操作将s[0:i]转化为t[0:j],只需要先在“s[0:i]转化为t[0:j]”的操作开端做1次移除操作移除s[i]将s[0:i]转化为s[0:i-1],然后再做k1个操作就可以转换为t[0:j]。对应表格,对应矩阵d[i][j]处即填入k1+1。(左)
(2)设可以在k2个操作内将s[0:i]转换为t[0:j-1],用k2+1次操作将s[0:i]转化为t[0:j],先用k2次操作将s[0:i]转化为t[0:j-1],然后再执行1次插入操作在“s[0:i]变成t[0:j-1]的操作”的末尾插入“增加t[j]”的一次操作,即可将s[0:i]转化为t[0:j]。对应矩阵d[i][j]处即填入k2+1。(上)
(3)设可以在k3个操作内将s[0:i-1]转化为t[0:j-1] ,此时需分情况讨论:
**若s[i]==t[j],S[0:i]变到t[0:j]就只要k3个操作,对应矩阵d[i][j]处即填入k3;
**若s[i]!=t[j],则需1次换操作加在s[0:i-1]转化为t[0:j-1]的操作数基础上就可以将S[0:i]变到t[0:j],共k3+1次。对应矩阵d[i][j]处即填入k3+1。(左上角)
其实,通过上面三种情况的分析,我们可以得到下面这个递推公式:
实现过程
下面我们用一个简单的例子来实现下算法的过程,以abc和abe这两个字符串为例
首先进行如下初始化(开辟d[n+1][m+1]数据空间,相应位置数据初始化):
(ps:”A处”是一个标记,只是为了方便讲解,不是这个表的内容。)
计算A处的值
它的值取决于:左边的1、上边的1、左上角的0.
按照上面我们的分析:
上面的值和左面的值都要求加1,这样得到1+1=2。
A处 由于是两个a相同,左上角的值加0.这样得到0+0=0。
这是后有三个值,左边的计算后为2,上边的计算后为2,左上角的计算为0,所以A处 取他们里面最小的0.于是表成为下面的样子
在B处 会同样得到三个值,左边计算后为3,上边计算后为1,在B处 由于对应的字符为a、b,不相等,所以左上角应该在当前值的基础上加1,这样得到1+1=2,在(3,1,2)中选出最小的为B处的值。
于是表就更新了
C处 计算后:上面的值为2,左边的值为4,左上角的:a和e不相同,所以加1,即2+1,左上角的为3。在(2,4,3)中取最小的为C处 的值。
依次推得到
I处: 表示abc 和abe 有1个需要编辑的操作。这个是需要计算出来的。
同时,也获得一些额外的信息。
A处: 表示a 和a 需要有0个操作。字符串一样
B处: 表示ab 和a 需要有1个操作。
C处: 表示abe 和a 需要有2个操作。
D处: 表示a 和ab 需要有1个操作。
E处: 表示ab 和ab 需要有0个操作。字符串一样
F处: 表示abe 和ab 需要有1个操作。
G处: 表示a 和abc 需要有2个操作。
H处: 表示ab 和abc 需要有1个操作。
I处: 表示abe 和abc 需要有1个操作。
程序实现
#include<bits/stdc++.h>
using namespace std;
int min(int a,int b,int c)
{
return (a<b)?(a<c?a:c):(b<c?b:c);
}
int main()
{
FILE * file;
freopen("input.txt", "r", stdin);
freopen("output.txt","w",stdout);
int d[6][8];
string a,b;
cin>>a>>b;
for (int i=0;i<=b.size()+1;i++)
{
for (int j=0; j<=a.size()+1;j++)
{
if (i==0&&j==0)
d[i][j]=0;
else if (i==0&& j > 0)
d[i][j]=j;
else if (i>0&&j==0)
d[i][j]=i;
else if(i>=1&&j>=1)
{
int k =((b[i-1]==a[j-1])?0:1);
d[i][j]=min(d[i-1][j]+1, d[i][j-1]+1,d[i-1][j-1]+k);
}
}
}
/*
for(int i=0;i<b.size()+1;i++)
{
for(int j=0;j<a.size()+1;j++)
{
cout<<d[i][j]+" ";
}
cout<<endl;
}
*/
cout<<d[b.size()+1][a.size()+1];
return 0;
}
更多
https://my.oschina.net/mustang/blog/58125
https://blog.csdn.net/the_k1/article/details/78442814
https://www.cnblogs.com/cangT-Tlan/p/6219005.html
http://www.cnblogs.com/jiabei521/p/3353390.html
http://wdhdmx.iteye.com/blog/1343856
【附:一文一图】
动态规划 001 - 编辑距离(Levenshtein Distance)问题的更多相关文章
- 字符串相似度算法(编辑距离Levenshtein Distance)的应用场景
应用场景 DNA分析: 将DNA的一级序列如β-球蛋白基因的第一个外显子(Exon)转化为分子“结构图”,然后由所得“结构图”提取图的不变量,如分子连接性指数.以图的不变量作为自变量,再由相似度计算公 ...
- C#实现Levenshtein distance最小编辑距离算法
Levenshtein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致.该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑 ...
- Levenshtein Distance算法(编辑距离算法)
编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符, ...
- 扒一扒编辑距离(Levenshtein Distance)算法
最近由于工作需要,接触了编辑距离(Levenshtein Distance)算法.赶脚很有意思.最初百度了一些文章,但讲的都不是很好,读起来感觉似懂非懂.最后还是用google找到了一些资料才慢慢理解 ...
- 用C#实现字符串相似度算法(编辑距离算法 Levenshtein Distance)
在搞验证码识别的时候需要比较字符代码的相似度用到"编辑距离算法",关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Dist ...
- [转]字符串相似度算法(编辑距离算法 Levenshtein Distance)
转自:http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=981 http://www.cnblogs.com/ivanyb/archi ...
- Levenshtein Distance(编辑距离)算法与使用场景
前提 已经很久没深入研究过算法相关的东西,毕竟日常少用,就算死记硬背也是没有实施场景导致容易淡忘.最近在做一个脱敏数据和明文数据匹配的需求的时候,用到了一个算法叫Levenshtein Distanc ...
- 利用Levenshtein Distance (编辑距离)实现文档相似度计算
1.首先将word文档解压缩为zip /** * 修改后缀名 */ public static String reName(String path){ File file=new File(path) ...
- 字符串相似度算法(编辑距离算法 Levenshtein Distance)(转)
在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...
随机推荐
- 分享6个网址二维码API接口
1.http://pan.baidu.com/share/qrcode?w=150&h=150&url=http://www.54admin.net 2.http://b.bshare ...
- (原)Unreal 渲染模块 渲染流程
@author:白袍小道 浏览分享随缘,评论不喷亦可. 扯淡部分: 在temp中,乱七八糟的说了下大致的UE过程.下面我们还是稍微别那么任性,一步步来吧. UE渲染模块牵扯到场景遍历. ...
- go语言的学习网站
1)http://www.runoob.com/go/go-data-types.html 2)https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/ ...
- 转:npm install 时总是报phantomjs-prebuilt@2.1.14安装失败
该文章转自:http://www.cnblogs.com/alice626/p/6206722.html 在npm install时总是报如下错误, 尝试单独安装:npm install phanto ...
- JavaScript里面之dom操作
1.dom之选择元素 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...
- excel模板解析—桥接模式:分离解析模板和业务校验
在做excel模板解析的时候,其实会有两个部分,第一,将模板读取出来,校验一些必录项等. 但除了这些,在数据真正被业务线使用的时候,还会有一些其他的校验,比如说:根据业务,年龄是不能超过多少岁的,包括 ...
- chrome浏览器console拓展用法
chrome 浏览器console打印 使用CSS美化输出信息 console.log("%cThis will be formatted with large, blue text&quo ...
- 【CDN】- 什么是CDN
高冷科普: CDN,Content Delivery Network缩写,即内容分发网络.通过在网络各处放置节点服务器所构成的在现有的互联网基础之上的一层智能虚拟网络,CDN系统能够实时地根据网络流量 ...
- GYM - 101147 A.The game of Osho
题意: 一共有G个子游戏,一个子游戏有Bi, Ni两个数字.两名玩家开始玩游戏,每名玩家从N中减去B的任意幂次的数,直到不能操作判定为输.问谁最终能赢. 题解: 当Bi为奇数的时候,显然Bi的所有次幂 ...
- fastjson对json字符串JSONObject和JSONArray互相转换操作示例
2017-03-25 直接上代码: package com.tapt.instance; import com.alibaba.fastjson.JSON; import com.alibaba.fa ...